Phil Zimmermann on PGP

certificate server so others can find it. Their own PGP software installs this key
revocation certificate on their public keyrings and automatically prevents
them from accidentally using your public key ever again. You can then
generate a new private/public key pair and publish the new public key. You
could send out one package containing both your new public key and the key
revocation certificate for your old key.

What if you lose your private key?

Normally, if you want to revoke your own private key, you can use the Revoke
command from the PGPkeys menu to issue a revocation certificate, signed
with your own private key.

But what can you do if you lose your private key, or if your private key is
destroyed? You can’t revoke it yourself, because you must use your own
private key to revoke it, and you don’t have it anymore. If you do not have a
Designated Revoker for your key, someone specified in PGP who can revoke
the key on your behalf, you must ask each person who signed your key to
retire his or her certification. Then anyone attempting to use your key based
on the trust of one of your introducers will know not to trust your public key.

For more information on Designated Revokers, see the PGP Desktop Security
User’s Guide.

Beware of snake oil

When examining a cryptographic software package, the question always
remains, why should you trust this product? Even if you examined the source
code yourself, not everyone has the cryptographic experience to judge the
security. Even if you are an experienced cryptographer, subtle weaknesses in
the algorithms could still elude you.

When I was in college in the early seventies, I devised what I believed was a
brilliant encryption scheme. A simple pseudorandom number stream was
added to the plaintext stream to create ciphertext. This would seemingly
thwart any frequency analysis of the ciphertext, and would be uncrackable
even to the most resourceful government intelligence agencies. I felt so smug
about my achievement.

Years later, I discovered this same scheme in several introductory
cryptography texts and tutorial papers. How nice. Other cryptographers had
thought of the same scheme. Unfortunately, the scheme was presented as a
simple homework assignment on how to use elementary cryptanalytic
techniques to trivially crack it. So much for my brilliant scheme.

An Introduction to Cryptography 43



Phil Zimmermann on PGP

44

From this humbling experience I learned how easy it is to fall into a false sense
of security when devising an encryption algorithm. Most people don’t realize
how fiendishly difficult it is to devise an encryption algorithm that can
withstand a prolonged and determined attack by a resourceful opponent.
Many mainstream software engineers have developed equally naive
encryption schemes (often even the very same encryption scheme), and some
of them have been incorporated into commercial encryption software
packages and sold for good money to thousands of unsuspecting users.

This is like selling automotive seat belts that look good and feel good, but snap
open in the slowest crash test. Depending on them may be worse than not
wearing seat belts at all. No one suspects they are bad until a real crash.
Depending on weak cryptographic software may cause you to unknowingly
place sensitive information at risk when you might not otherwise have done
so if you had no cryptographic software at all. Perhaps you may never even
discover that your data has been compromised.

Sometimes commercial packages use the Federal Data Encryption Standard
(DES), a fairly good conventional algorithm recommended by the government
for commercial use (but not for classified information, oddly
enough—Hmmm). There are several “modes of operation” that DES can use,
some of them better than others. The government specifically recommends not
using the weakest simplest mode for messages, the Electronic Codebook
(ECB) mode. But they do recommend the stronger and more complex Cipher
Feedback (CFB) and Cipher Block Chaining (CBC) modes.

Unfortunately, most of the commercial encryption packages I've looked at use
ECB mode. When I've talked to the authors of a number of these
implementations, they say they’ve never heard of CBC or CFB modes, and
don’t know anything about the weaknesses of ECB mode. The very fact that
they haven’t even learned enough cryptography to know these elementary
concepts is not reassuring. And they sometimes manage their DES keys in
inappropriate or insecure ways. Also, these same software packages often
include a second faster encryption algorithm that can be used instead of the
slower DES. The author of the package often thinks his proprietary faster
algorithm is as secure as DES, but after questioning him I usually discover that
it’sjust a variation of my own brilliant scheme from college days. Or maybe he
won't even reveal how his proprietary encryption scheme works, but assures
me it’s a brilliant scheme and I should trust it. I'm sure he believes that his
algorithm is brilliant, but how can I know that without seeing it?

In fairness I must point out that in most cases these terribly weak products do
not come from companies that specialize in cryptographic technology.

An Introduction to Cryptography



Phil Zimmermann on PGP

Even the really good software packages, that use DES in the correct modes of
operation, still have problems. Standard DES uses a 56-bit key, which is too
small by today’s standards, and can now be easily broken by exhaustive key
searches on special high-speed machines. The DES has reached the end of its
useful life, and so has any software package that relies on it.

There is a company called AccessData (http:/ /www.accessdata.com) that
sells a very low-cost package that cracks the built-in encryption schemes used
by WordPerfect, Lotus 1-2-3, MS Excel, Symphony, Quattro Pro, Paradox, MS
Word, and PKZIP. It doesn’t simply guess passwords—it does real
cryptanalysis. Some people buy it when they forget their password for their
own files. Law enforcement agencies buy it too, so they can read files they
seize. I talked to Eric Thompson, the author, and he said his program only
takes a split second to crack them, but he put in some delay loops to slow it
down so it doesn’t look so easy to the customer.

In the secure telephone arena, your choices look bleak. The leading contender
is the STU-III (Secure Telephone Unit), made by Motorola and AT&T for
$2,000 to $3,000, and used by the government for classified applications. It has
strong cryptography, but requires some sort of special license from the
government to buy this strong version. A commercial version of the STU-IIl is
available that is watered down for NSA’s convenience, and an export version
is available that is even more severely weakened. Then there is the $1,200
AT&T Surity 3600, which uses the government’s famous Clipper chip for
encryption, with keys escrowed with the government for the convenience of
wiretappers. Then, of course, there are the analog (nondigital) voice
scramblers that you can buy from the spy-wannabe catalogs, that are really
useless toys as far as cryptography is concerned, but are sold as “secure”
communications products to customers who just don’t know any better.

In some ways, cryptography is like pharmaceuticals. Its integrity may be
absolutely crucial. Bad penicillin looks the same as good penicillin. You can
tell if your spreadsheet software is wrong, but how do you tell if your
cryptography package is weak? The ciphertext produced by a weak
encryption algorithm looks as good as ciphertext produced by a strong
encryption algorithm. There’s a lot of snake oil out there. A lot of quack cures.
Unlike the patent medicine hucksters of old, these software implementors
usually don’t even know their stuff is snake oil. They may be good software
engineers, but they usually haven’t even read any of the academic literature in
cryptography. But they think they can write good cryptographic software.
And why not? After all, it seems intuitively easy to do so. And their software
seems to work OK.

An Introduction to Cryptography 45



Phil Zimmermann on PGP

46

Anyone who thinks they have devised an unbreakable encryption scheme
either is an incredibly rare genius or is naive and inexperienced.
Unfortunately, I sometimes have to deal with would-be cryptographers who
want to make “improvements” to PGP by adding encryption algorithms of
their own design.

I remember a conversation with Brian Snow, a highly placed senior
cryptographer with the NSA. He said he would never trust an encryption
algorithm designed by someone who had not “earned their bones” by first
spending a lot of time cracking codes. That made a lot of sense. I observed that
practically no one in the commercial world of cryptography qualifies under
this criterion. “Yes,” he said with a self-assured smile, “ And that makes our job
at NSA so much easier.” A chilling thought. I didn’t qualify either.

The government has peddled snake oil too. After World War 1I, the United
States sold German Enigma ciphering machines to third-world governments.
But they didn’t tell them that the Allies cracked the Enigma code during the
war, a fact that remained classified for many years. Even today many UNIX
systems worldwide use the Enigma cipher for file encryption, in part because
the government has created legal obstacles against using better algorithms.
They even tried to prevent the initial publication of the RSA algorithm in 1977.
And they have for many years squashed essentially all commercial efforts to
develop effective secure telephones for the general public.

The principal job of the United States government’s National Security Agency
is to gather intelligence, principally by covertly tapping into people’s private
communications (see James Bamford’s book, The Puzzle Palace). The NSA has
amassed considerable skill and resources for cracking codes. When people
can’t get good cryptography to protect themselves, it makes NSA’s job much
easier. NSA also has the responsibility of approving and recommending
encryption algorithms. Some critics charge that this is a conflict of interest, like
putting the fox in charge of guarding the hen house. In the 1980s, NSA had
been pushing a conventional encryption algorithm that they designed (the
COMSEC Endorsement Program), and they won't tell anybody how it works
because that’s classified. They wanted others to trust it and use it. But any
cryptographer can tell you that a well-designed encryption algorithm does not
have to be classified to remain secure. Only the keys should need protection.
How does anyone else really know if NSA’s classified algorithm is secure? It’s
not that hard for NSA to design an encryption algorithm that only they can
crack, if no one else can review the algorithm.

An Introduction to Cryptography



Phil Zimmermann on PGP

There are three main factors that have undermined the quality of commercial
cryptographic software in the United States.

* The first is the virtually universal lack of competence of implementors of
commercial encryption software (although this is starting to change since
the publication of PGP). Every software engineer fancies himself a
cryptographer, which has led to the proliferation of really bad crypto
software.

* The second is the NSA deliberately and systematically suppressing all the
good commercial encryption technology, by legal intimidation and
economic pressure. Part of this pressure is brought to bear by stringent
export controls on encryption software which, by the economics of
software marketing, has the net effect of suppressing domestic encryption
software.

¢ The third principle method of suppression comes from the granting of all
the software patents for all the public key encryption algorithms to a single
company, affording a single choke point to suppress the spread of this
technology (although this crypto patent cartel broke up in the fall of 1995).

The net effect of all this is that before PGP was published, there was almost no
highly secure general purpose encryption software available in the United
States.

I’'m not as certain about the security of PGP as I once was about my brilliant
encryption software from college. If I were, that would be a bad sign. But I
don’t think PGP contains any glaring weaknesses (although I'm pretty sure it
contains bugs). I have selected the best algorithms from the published
literature of civilian cryptologic academia. For the most part, these algorithms
have been individually subject to extensive peer review. I know many of the
world’s leading cryptographers, and have discussed with some of them many
of the cryptographic algorithms and protocols used in PGP. It’s well
researched, and has been years in the making. And I don’t work for the NSA.
But you don’t have to trust my word on the cryptographic integrity of PGP,
because source code is available to facilitate peer review.

One more point about my commitment to cryptographic quality in PGP: Since
I first developed and released PGP for free in 1991, I spent three years under
criminal investigation by U.S. Customs for PGP’s spread overseas, with risk of
criminal prosecution and years of imprisonment. By the way, you didn’t see
the government getting upset about other cryptographic software—it’s PGP
that really set them off. What does that tell you about the strength of PGP? I
have earned my reputation on the cryptographic integrity of my products. I
will not betray my commitment to our right to privacy, for which I have risked
my freedom. I'm not about to allow a product with my name on it to have any
secret back doors.

An Introduction to Cryptography 47



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.



http://www.daneprairie.com

