Presentation at Amesterdan ORACLE User Group, Holland 1996

FORMS 4.5 TIPS AND TECHNIQUES

Ammar Sajdi

Oracle Consultant

Palestine Engineering Company

Amman - Jordan

Summary

The basic objective of this paper is to generate a standard template that can become the basis of every form in you application. This objective will be achieved by exploiting many of the built-in features in FORMS 4.5 such as MDI (Multiple Document Interface) Windows, Toolbars as well as other helpful procedures created by the author. By the end of this paper, you will have an object group encapsulating all objects required to build the template in addition to a set of library tools that will expedite its functionality . To add windows 95 flavor to your form a discussion of how to utilize Windows 95 Tab control is discussed.

Template Layout

Figure 1 shows typical layout of the template. It contains an MDI toolbar, a default menu, the user name and the date. The design will allow you to have a dynamic title for the MDI window, and a dynamic title for you root window (Window0). For example, you can have your company name as the MDI title and your module name as the root window title. The application window will start in the maximized state.

The Toolbar icons will display a hint describing the functionality of each icon. This functionality will be established by two libraries that are available with the DEVELOPER/2000 Software.

As part of this template, procedures will be written to allow you to

	- Create Pop-List showing dynamically changing LIST-ELEMENTS.

	- Show system messages as standard alerts.

	- Show system errors as alerts.

	- Display application messages as alerts with the ability of changing them or

	displaying them in other languages independently of your code.

Detailed Template Construction:

1- Create a New module and call it EOUG.

2- Create a Canvas and call it TOOLBAR

3- In the property sheet of the Toolbar canvas set the Canvas_View type to Horizontal Toolbar and set its height to 25.

4- Create a control block and call it TOOLBAR. Make the TOOLBAR canvas is the active canvas for this block.

5- Create a set of Iconic Buttons on the Toolbar canvas. The following list show the properties of button that can be created:-

Button Name�Icon Name�Label�Iconic�Enabled�Navigable��Execute_Query�Execute�Execute Query�True�False�False��Enter_Query�Enter�Enter Query�True�False�False��Cancel_Query�Cancel�Cancel Query�True�False�False��Exit_Form�Exit�Exit�True�False�False��Help�Help�Help�True�False�False��Next_Block�Right�Next Block�True�False�False��Previous_Block�Left�Previous Block�True�False�False��Down �Down�Next Record�True�False�False��Up�Up�Previous Record�True�False�False��Commit_Form�Save�Save�True �False�False��

Do not forget to set the NAVIGABLE Property of OFF

� EMBED Word.Picture.6 ���

					Figure 1

Please note the following:-

- The button name should correspond to a known build-in key packaged procedure as this name is processed by the DO_KEY(Button_name) Built-in.

- The icon names represent icon that exist in the ‘c:\orawin\forms45\demos\icons’ directory. To ensure proper functionality, make sure that the Oracle.ini parameter file contains the following entry:

	TK21_ICONS = c:\orawin\forms45\demos\icons;

- The label can be modified as you wish; this label will appear to the end user as a Hint.

- Create the Execute Query button and the Cancel Query button next to each other and place the Enter Query button exactly over both of them.

6- Attach the following Libraries

	HINT.PLL

	TOOLBAR.PLL

These libraries are shipped with the Developer/2000 software and can be found in ‘c:\orawin\forms45\plsqllib’ directory. The Hint library will ensure that the bubble hint display procedure is handled correctly. Please read the accompanied HINT.WRI file. The toolbar library contains an important procedure called Button_Proc. This generic button procedure reads the NAME of the button and performs a DO_KEY(item_name).

Regarding QUERY-operation:

If there are buttons called EXECUTE_QUERY and CANCEL_QUERY, this function shows them, when the ENTER_QUERY button is pressed and hides them, when EXECUTE_- or CANCEL_QUERY is pressed. No error should be returned, if these buttons do not exist. To make naming of the buttons easier, EXIT, QUIT and EXIT_FORM all perform exit_form, even if the form is in ENTER-QUERY mode. A CANCEL_QUERY button-name cancels a currently "open" query.

7- Create the following FORM-LEVEL-TRIGGERS

WHEN-MOUSE-ENTER

HINT.ShowButtonHelp;

WHEN-MOUSE-UP

HINT.HideButtonHelp

WHEN-MOUSE-DOWN

HINT.HideButtonHelp

WHEN-TIMER-EXPIRED

HINT.ShowButtonHelpHandler

WHEN-WINDOW-DEACTIVATED

HINT.HideButtonHelp

WHEN-WINDOW-CLOSED

HINT.HideButtonHelp

Also create the following BLOCK LEVEL trigger at TOOLBAR block

WHEN-BUTTON-PRESSED

Button_Proc;

The initial structure of the template is now ready and therefore, we want to package it and all its related objects so that we can copy or reference it in the future. Object groups provide such facility.

8- Create an object group and change its name to COMMON_OBJECTS.

9- Drag the TOOLBAR block and the form level triggers and drop them under the COMMON_OBJECTS group children. Please keep in mind that dragging a block into an object group will implicitly include all objects that are owned by the block (Items, triggers, relations). However, these objects will not explicitly appear as separate objects in the list of object children.

10- Create 3 Alerts with the following specifications

ALERT NAME�TITLE�STYLE�BUTTON1�BUTTON2/3��STD_ALERT�APP. MESSAGE�NOTE�OK�NULL��ERROR_ALERT�ERROR T�CAUTION�STOP�NULL��MESSAGE_ALERT�MESSAGE�NOTE�OK�NULL��

Drag these three Alerts and drop them under COMMON_OBJECT group children.

In order to redirect the messages to the corresponding alerts, some programming is required. For ease of reference a library will be created

10- Create a library and call it TEMPLATE.PLL

11- Create a procedure within this library and call it ERROR_TO_ALERT

PROCEDURE ERROR_TO_ALERT IS

	alert_id		ALERT;

	Alert_Response 	NUMBER;

 	Alert_Error	VARCHAR2(80);

BEGIN

	alert_id:= FIND_ALERT(‘Error_Alert’);

	Alert_error := error_type||'-'||To_Char(error_code)||': '||error_text;

	Set_Alert_Property (alert_id,ALERT_MESSAGE_TEXT,alert_error);

	ALERT_response := SHOW_ALERT(alert_id);

END;

12) Create another procedure in the same library and call it MESSAGE_TO_ALERT

PROCEDURE MESSAGE_TO_ALERT IS

	alert_id		ALERT;

	Alert_Response	NUMBER;

 	Alert_Error	VARCHAR2(80);

BEGIN

	alert_id := Find_Alert('Message_Alert);

	alert_message := message_type||'-'||To_Char(message_code)|| ' '||message_text;

	Set_Alert_Property (alert_id,ALERT_MESSAGE_TEXT,alert_message);

	ALERT_response := Show_Alert(alert_id);

END

13) Compile, Save TEMPLATE.PLL and attach it to your form.

14) Create the following FORM-LEVEL-TRIGGER

ON_ERROR

Error_To_Alert;

On_MESSAGE

Message_To_Alert;

As for application messages, a method will be employed that will enable the developer to store his messages in more than one language in a database table instead of hard coding it within the application. To accomplish this task, a table will be created that will hold all application parameters including application messages as well as other application codes. A sample data of this table looks like the following :

TABLE: SYS_CODES

	SC_TYPE SC_SERIAL	ENGLISH_DESCR		 FOREIGN_DESCR

	0		0	MESSAGES

	0		1	EMPLOYEE ALREADY EXISTS	 Some Foreign messages

	0		2	PROGRAM NOT DEFINED 		

	0		3	COMPANY UNKNOWN		

	0		4		..

	0		5 	

	0		nn etc

	1		0	NATIONALITY

	1		1	EGYPTIAN

	1		2	BRITISH

	1		3	JORDANIAN

	2		0	CURRENCY

	2		1	USD

	2		2	BRITISH POUND

	2		3	GERMAN MARK

 etc ..

Note that all application messages have SC_TYPE = 0

15) Create a new procedure in the template library and call SHOW_STD_ALERT

	

SYNTAX:

SHOW_STD_ALERT(message_no , style);

Type: Unrestricted Procedure.

Description : Displays application messages using a pre-defined alert called STD_ALERT.

Parameters:

message_no	Specifies the sc_serial number of the message whose text will be extracted from SYS_CODES table

style		Specifies the following strings:

	SEVERE specifies that the message will be displayed and after it is acknowledged subsequent processing will stop. Therefore, there will be no need to raise FORM_TRIGGER_FAILURE

	NONSEVERE specifies that the message will be displayed and subsequent processing will continue

PROCEDURE SHOW_STD_ALERT(mesg_no number,alert_style char) IS

	CURSOR get_systemf IS select english_descr, foreign_descr from SYS_CODES

 				where SC_TYPE = 0 -- choose messages category

 				and SC_SERIAL = mesg_no;

	

	sys_edesc 		VARCHAR2(255);

	sys_fdesc			VARCHAR2(255);

 	alert_id 		ALERT := Find_Alert('std_alert');

	dummy_var		NUMBER;

	message_language	VARCHAR2(15);

	display_message		VARCHAR2(255);	

BEGIN

 OPEN get_systemf;

 FETCH get_systemf into sys_edesc,sys_fdesc;

 IF (get_systemf%NOTFOUND) then

 	Set_Alert_Property(alert_id, ALERT_MESSAGE_TEXT,'The code '||to_char(mesg_no)|| 'DOES NOT EXIST IN CODES TABLE');	

 	 RAISE form_trigger_failure;

 ELSE

 	message_language :=GET_MESSAGE_LANGUAGE ; -- A call to a library function

 	IF upper(Message_language) ='FOREIGN' Then		

		 display_message := sys_fdesc; -- choose Foreign Description

 	 ELSE

 		 display_message := sys_edesc; -- Choose English Description

	 END IF;	

 END IF;

 CLOSE get_systemf;	

 Set_Alert_Property(alert_id, ALERT_MESSAGE_TEXT,display_message); -- Display Alert Text

 dummy_var := Show_Alert(alert_id);

 IF (alert_style like 'SEVERE') then

	RAISE form_trigger_failure;

 END IF;

END;

The careful reader should have noticed that a new function called GET_MESSAGE_LANGUAGE was used. This is a function that should be added to our template library.

16) Add a function called GET_MESSAGE_LANGUAGE to the template library

SYNTAX:

GET_MESSAGE_LANGUAGE;

Type: Unrestricted Function.

Returns : CHAR indicating the language used for displaying application messages

Description : Reads a user defined environment variable called MESSAGE_LANGUAGE (For MS Windows it is the ORACLE.INI file).

Parameters: None

FUNCTION get_message_language RETURN char IS

 		Message_language 	VARCHAR2(20);

BEGIN

 TOOL_ENV.GETVAR(‘MESSAGE_LANGUAGE’,MESSAGE_LAGUAGE);

 IF message_language is NULL or SOUNDEX(message_language)=SOUNDEX(‘ENGLISH’) THEN

	RETURN(‘ENGLISH’);

 ELSE

	RETURN (‘FOREIGN’);

 END IF;

END;

17) The next step is to manipulate the MDI Window. The MDI window is the parent window or the application window. As previously stated, the possibility of dynamically changing the MDI title as well as the root menu (Window0) title will be provided for. Therefore, these titles will not be hard coded, nor will they be fixed for a given application. As suggested earlier, the MDI title will show the Company Name while the root window title will display a name of your choice that relates to the current module name. To accomplish this task, two database tables are needed.

TABLE:	COMPANY_NAME

	COMPANY_ID		ENGLISH_C_NAME	FOREIGN_C_NAME

	

		1		PIONEERING TECH.	Any Foreign Name

TABLE:	PROGRAMS

	MODULE_NAME	ENGLISH_TITLE	FOREIGN_TITLE

		EOUG		 TEMPLATE		Template

		MODULE1	 ORDER ENTRY	 	Order entry

Note that the module_name is the name of the module you create using Oracle Forms Designer Navigator. Therefore, for each new module you create you must add an entry to PROGRAMS table.

Now create the following FORM_LEVEL_TRIGGER trigger

PRE-FORM

SET_TITLE (:SYSTEM.CURRENT_FORM);

TOOLBAR.MAX_WIN

SET_TITLE is yet another library function that we will create

SYNTAX:

SET_TITLE (module_name);

Type: Unrestricted Procedure.

Description : Reads the company name and the module name from database tables and sets the MDI window title to the company name and the root window title to the module name. The title language depends on the MESSAGE_LANGUAGE environment variable. This procedure also maximizes the MDI window as well as the root window. These titles will be dynamically changed by updating the database tables.

Parameters:

module_name Specifies the name of a module. It is not this name that will be displayed, rather, this name will be used to look up the proper title that is associated with this module. This method will make the window title independent of any operating system naming conventions.

PROCEDURE SET_TITLE(form_name in char) IS

 CURSOR get_company_name IS SELECT english_c_name, foreign_c_name FROM company_name;

 CURSOR get_program_name is SELECT english_title, foreign_title FROM programs

			 	WHERE module_name LIKE form_name;

	

	english_c_name		VARCHAR2(30);

	foreigh_c_name 		VARCHAR2(30);

	english_title 		VARCHAR2(30);

	 foreign_title		VARCHAR2(30);

	display_prog 		VARCHAR2(30);

	display_comp		VARCHAR2(30);

BEGIN

 OPEN get_company_name;

 FETCH get_company_name into english_c_name,foreign_c_name;

 IF (get_company_name%NOTFOUND) THEN

	CLOSE get_company_name;

 	show_std_alert(3,'SEVERE') -- Alert Message No 3, See SYS_CODES Table

 END IF;

 CLOSE get_company_name;

 OPEN get_program_name;

 FETCH get_program_name into english_title, foerign_title;

 IF (get_program_name%NOTFOUND) THEN

	CLOSE get_program_name;

	show_std_alert(2,'SEVERE');

 END IF;

	CLOSE get_program_name;

	IF upper(GET_MESSAGE_LANGUAGE) = 'FOREIGN' THEN

			display_comp := foreign_c_name;

			display_prog := foreign_title;

 ELSE

			display_comp := english_c_name;

			display_prog := english_title;

 END IF;

 Set_window_property(FORMS_MDI_WINDOW,TITLE,display_comp);

 Set_window_property('WINDOW0',TITLE,display_prog);

END;

Drag the ON-MESSAGE, ON-ERROR, PRE-FORM triggers and drop them under the COMMON_OBJECTS Group children.

18) Generate and save EOUG module

NOTE: Make sure that the library you created (TEMPLATE.PLL) exists in the path indicated by the environment variable FORMS45_PATH

STEPS FOR CREATING NEW FORMS

As the template is now complete, let see the steps needed to utilize it in a newly created form:

1) Create a new module

2) Insert a record into the PROGRAMS table i.e.

 	SQL> INSERT INTO PROGRAMS VALUES (‘mdoule_name’,’your 						english title’,’foreign title’);

3)Make sure the that COMPANY_NAME table contains a record indicating your company name.

4)Open EOUG.FMB (The TEMPLATE).

5)Attach TEMPLATE.PLL, HINT.PLL AND TOOLBAR.PLL to the new module.

6)Drag the COMMON_GROUP object group from EOUG module and drop it under the Object Group node in new module.

7)Invoke the property sheet of the Form module and set the Horiz. MDI Toolbar to TOOLBAR. If you do not want the status and message line to appear, you can assign the Console Window property to NULL.

After the basic structure is built, you can add other objects like database blocks, triggers, canvases etc.

Important Note: When you create your own blocks make sure that they are assigned canvases other that the TOOLBAR canvas that was included in you template.

Dynamic POP-LIST

Every application you build will have a set of codes representing Locations, Nationalities, Currencies ,etc . The SYS_CODES table shown earlier indicates a practical representation of such coding scheme. Pop-lists is one of the most widely used interfaces to graphically implement coding where the description of the code is shown by the pop-list. When you create a pop-list using DEVELOPER/2000, you will notice that you are only allowed to enter static elements for this list. For example, if you wish to implement a pop-list showing nationalities, then you will have to enter all nationalities at design time. If later a nationality has to be added, then you will need to modify your form. To overcome this problem, you need to create a table that contains all nationalities (Similar to SYS_CODES) and then either resort to using Oracle’s List of Values (LOV) or utilize the following procedure to populate list elements from a database table:

SYNTAX:

FILL_POP (List_Item_Name,Type);

Type: Unrestricted Procedure.

Description : This Procedure reads the SYS_CODES table and selects the records that need to fill the pop-list.

Parameters:

List_Item_name: Specifies the name of the list item that need to be populated. The name can contain the Block name as well.

Type:	This parameter is used to specify which category is need to be selected for the population of the pop-list. In other words, this parameter corresponds to the value of SC_TYPE in SYS_CODES table. For example, if you wanted to show nationalities, you would choose ‘3’ .

PROCEDURE FILL_POP (IN_ITEM_NAME in char,type in char) IS

	select_text		VARCHAR2(255);

	list_name		VARCHAR2(30);

	group_id		RECORDGROUP := Find_Group(in_item_name);

	errcode		NUMBER;

BEGIN

	list_name := translate(in_item_name,’.’,’_’); -- Converts block.item to block_item

/* Construct a Select Text from SYS_CODES Table */

	select_text := ‘SELECT english_descr, to_char(sc_serial) from sys_codes where

			 sc_serial >0 and sc_type =‘|| type|| ’ order by english_descr’;

/* Create a two column query record group called list_name */

	IF ID_NULL(group_id) THEN

			group_id := Create_Group_From_Query(list_name,select_text);

	END IF;

	errcode := Populate_Group(list_name);

/* Populate the list item with the values from the record group */

	Populate_List(in_item_name,group_id);

	Delete_group(group_id);

END;

You can add this procedure to your template library.

NOTE: In case you want to construct your select text, then you should know that the select text has to be made up of two CHAR column. The first one is the description and the second one is the code value. I came across situations where developers stored the entire SELECT statement in database tables, then during run-time they would retrieve these statement within the procedure into the select_text variable.

To use this procedure, you can define WHEN-NEW-FORM-INSTANCE trigger. For example, if you have a List-Item called CURRENCY, you can dynamically fill it by

Fill_Pop (‘BLK1.CURRENCY’,’3’);

NOTE: When you create the List-item, make sure that you invoke it property sheet and modify the List Elements property as follows:- Clear the default List Element by using ‘Ctrl <‘ and delete the corresponding List Item Value. If you do not do this step, you might encounter errors when the pop-list procedure is invoked.

TAB CONTROL

The last Part of this paper is to explain how one can utilize TAB controls. If your are using DEVELOPER/2000 then you are already familiar with Tab controls. Figure 2 shows the New Block Options with 4 Tabs. The caption for each tab is General, Items, Layout, Master/Detail.

To create such User Interface, you need to use Visual Basic Custom Controls (VBX). One known VBX that can be used to implement TAB controls is one called vsvbx.vbx from Video Soft. The following steps will guide into creating a functional TAB control

1) Create a Non-database Block and call it BLK0 then assign it to a Content Canvas-View called CANVAS0.

2) Create a VBX item in the layout editor and call it MY_TAB. Set its size big enough to hold all the Tabs you want.

3) Invoke the property sheet of MY_TAB VBX item.

		� EMBED Word.Picture.6 ���

				 Figure 2

4) In the VBX Control File property, browse to locate the VSVBX .VBX file.

5) Set the VBX Control Name to VideoSoftIndexTab

6) Make sure that the VBX Control Value is set to CurrTab.

7) The Caption property (In the miscellaneous properties) determines how may Tabs you will have. If for example, you want to have four tabs, then in the Caprion property, write the names the Tab folders separated by vertical bars i.e.

	

		General|Items|Layout|Master/Detail

8) The Position property will dictate where the Tabs will appear relative to the VBX item you created. You can Select Top, Bottom , Right or Left.

9) Other properties to consider are Style and Color.

Manipulating Tabs

When the user clicks on one of the Tab Control, the value assigned to MY_TAB VBX-item will be the number of the current Tab folder. For example, if ITEMS tab is clicked, the value held by MY_TAB is 1, if on the other hand Master/Detail is clicked, MY_TAB becomes 3 and so on.

It is now easy to manipulate canvases based on this Tab Control. Assume that you have created three canvases called CANVAS1, CANVAS2, CANVAS3 that correspond to the Tab Folders: Items, Layout and Master/ Details respectively. The already created CANVAS0 is associated with folder General. Finally, associate the following trigger with MY_TAB item

WHEN-CUSTOM-ITEM-EVENT

DECLARE

	curr_tab		char(1);

BEGIN

	curr_tab := blk0.my_tab;

	show_view (‘CANVAS’||curr_tab);

	go_block (‘BLK’||curr_tab); -- If necessary

END;

You may need to modify this trigger to cater for unexpected situations. Consider for example, a situation where the user clicks on a new Tab, the current tab value is changed and focus is moved to the new Tab, but for some reason (validation failure in the first block, for example) the new canvas corresponding to the current tab value failed to appear. In this case, your trigger should be able to get you back to your original folder.

Conclusion

Oracle FORM4.5 contains many features that makes programming easier. If efficiently utilized, Libraries, object group and classes can dramatically minimize the amount of work needed for application generation. The ability of FORM4.5 to integrate with third-party vendor open up a wealth of added functional capabilities. Tab control VBX integration vividly demonstrates such integration.

.

Ammar Sajdi	� PAGE �12�		

