Ammar Sajdi

13

DEVELOPER/2000 FORMS 5.0 ADVANCED TECHNIQUES

Ammar Sajdi

Consultant

Palestine Engineering Co., Amman - JORDAN

ORACLE Business Alliance Partner

The purpose of this paper is to explore interface possibilities that will make your end user application more interesting. You will notice that many of these possibilities are centered around Object Reusability techniques that are best implemented in FORMS 5.0 using the new Object Library enhancement. The examples illustrated in this paper will illustrate how to

 Add Calendar Functionality to your Form

 Create TreeView hierarchy (Navigator Like)

 Add Picklist Functionality

 Using EXEC_SQL lib to produce Dynamic Outputs

 Adding Calednar Functionality using ActiveX Controls

Many of the above functionality will be implemented by more than one technique

CALENDAR Functionality

List of Values are usually designed to enable the end user to choose his entry from a ready list. LOV's have been available in Oracle Forms since SQL*FORMS V3.0. However, if the entry field is a data field, it would be nice if we can display a calendar and let the user choose the required date from such calendar.
There are two methods that will accomplish this task.

Using Oracle's Object Library

[image: image1.png]Using Active-X (OCX)

In this section, Object Library approach will be used, and later in this paper, the OCX technique will be used.

We want to create a simple form based on the EMP block; and we want a calendar to be attached to the HIREDATE item so that when the user double clicks on this item, a calendar appears. The user will be allowed to pick a date and this date will be transferred to the HIREDATE item

Please follow the following Steps:

1) Create a new form based on the EMP table

2) Now, open an existing Object Library called STADARDS which is shipped by Oracle with Developer/2000 Rel 2.x. This will be done by opening the following file

“\ORAWIN95\TOOLS\DEVDEM20\DEMO\FORMS\stndrd20.olb “

 (where "olb" is file extension for Object Libarary files)

3) In the Object Library Node (Towards the end of the navigator and below PL/SQL Library node), you will see that a new object called STANDARDS appears. Double Click on this object and notice a new window containing reusable object appear

[image: image2.png]
4) This object library window contains many TABS. Find the TAB labeled "Components" which is the last TAB

5) Select CALENDAR Object in the Components TAB and drag to your Form and drop it in the Object Groups node of your form.

6) You will notice that many objects are immediately created by this drag and drop operation because all the object that were embedded in the CALEDAR Object are now transferred to your application ready for being reused.

7) Attach a libraray called Calendar.pll which is located in the same subdirectory as before :

“\ORAWIN95\TOOLS\DEVDEM20\DEMO\FORMS\calendar.pll “

8) Create a WHEN-MOUSE-DOUBLECLICK trigger on the HIREDATE Item:
lov.get_date(sysdate, -- initial date

'emp.hiredate', -- return block.item

240, -- window x position where the calendar appears

60, -- window y position

'Start Date', -- window title, you may change or arabize

 'OK', -- ok button label, you may change or arabize

 'Cancel', -- cancel button label

 TRUE, -- highlight weekend days

 FALSE, -- autoconfirm selection

 FALSE); -- autoskip after selection

You can copy this code from a Form called calendar.fmb supplied with your Developer/2000 package

10)Create a program unit called DATE_CHOOSEN. This function will move the chosen date from the calendar to the HIREDATE item.

PROCEDURE date_choosen IS

BEGIN

copy(to_char(date_lov.current_lov_date,'dd-mon-yyyy'), date_lov.date_lov_return_item);

go_item(date_lov.date_lov_return_item);

if date_lov.lov_auto_skip = TRUE then

 next_item;

end if;

END;

9) Before running the Form, make sure that your data block (EMP) appears as the first data block in Data Block Section of the Object Navigator.

11)Run the form, and try to invoke the Calendar by double clicking on the Hiredate item

Navigator Like Functionality:

The Following screen explains what is meant by Navigator Like Functionality

[image: image3.png]
The following Steps will lead you through the steps needed to implement TreeViews or Navigator style functionality.

1) Create a New forms

2) Using the STANDARD Object Library (Which was used in the previous example), drag the NAVIGATOR object and drop it in the Object Group node in the new form.

3) Attach a libraray called Navigator.pll which is located in the same subdirectory as before :

“\ORAWIN95\TOOLS\DEVDEM20\DEMO\FORMS\ “

4) As before, many objects will appear in the new form. These objects are the basis of our Navigator like interface.

5) In the Object Navigator, open the NAVIGATOR CONTROL BLOCK and delete the following Push Buttons

- CUT

- EDIT

- CREATE

- COPY

- PASTE

6)Write a procedure called REFRESH_TREES in the program unit

PROCEDURE refresh_trees IS

cursor d is select dname, deptno from dept order by dname;

cursor e(dno number) is select ename, empno from emp

where deptno=dno order by ename;

i
number;

begin

--the emps hierarchy

 navigator.delete_tree('emps');

 navigator.create_tree('emps');

 i := navigator.populate_tree_with_query('emps',

/*The following Select statement is important because it is the one that defines the hierarchy */

'select 1, level, ename, empno

from emp

connect by prior empno = mgr

start with job = ''PRESIDENT''');

--the organization

 navigator.delete_tree('depts');

 navigator.create_tree('depts');

 i := 1;

 for deptrec in d loop

 navigator.add_tree_element('depts', i, 1, 1,

 deptrec.dname, to_char(deptrec.deptno));

 i := i+1;

 for emprec in e(deptrec.deptno) loop

navigator.add_tree_element('depts', i, 1, 2,

emprec.ename, to_char(emprec.empno));

I := i+1;

 end loop;

 end loop;

end;

7) Run your form; you will notice that you are getting an empty hierarchy. Click on the open icon (On the upper left hand side of the canvas) and you should get EMP records appearing in a Manager – Employee hierarchy.

8) You can further enhance the Form by adding a push button that when pressed can display the information of the selected employee. Go back to the Object Navigator and Create a new data block based on the EMP table. Make sure that this new block is associated with a New Canvas.

9) Create an Iconic Button Called Edit

10) The icon file name is “EDIT”

11) Write the following Trigger associated with The Edit Push Button

When-Button-Pressed

if navigator.get_tree_name = 'DEPTS' and

navigator.get_tree_element_depth(navigator.get_tree_name,

navigator.to_index(:system.cursor_record)) = 1 then

return;

end if;

--Save the employee number

:global.THE_EMP:= navigator.get_tree_element_value(navigator.get_tree_name,

navigator.to_index(:system.cursor_record));

go_block('emp');

execute_query;

12)To make sure that the information that appears on the EMP data block is actually related to the selected employee. Write the following PRE-QUERY trigger on the EMP database block to synchronize the EMP Data Block with the selected Employee Number

PRE-QUERY

:emp.empno := :global.THE_EMP

13) Run your form and test its functionality

PICK LIST Functionality:

Pick Lists are extensively used in Forms 5.0 when wizards are utilized

It lets us select one or a group of items as the following screen shows:

[image: image4.png]
1) Create a New Form and drag the PICKLIST Object from the Components TAB of the STANDARD Object Library and drop in the Object Group in the new form.

2) Attach a libraray called Picklist.pll which is located in the same subdirectory as before :

“\ORAWIN95\TOOLS\DEVDEM20\DEMO\FORMS\ “

3) Go to the Window Node in the Object Navigator and rename the existing window from “WINDOW1” to “DEMO_WINDOW”

4) Now, you need a content Canvas, therefore, create a new canvas that will become the content canvas. Make sure that this canvas appears as the first canvas in the object navigator.

5) Create an additional Control Data block where your are going to place additional items. Call this new Data Block “DYNAMIC”

6) place this block as the first navigable block.

7) We will now create a poplist that when activated, will dynamically display all existing tables in the current schema.

8) Create a poplist item and call it “ANY_ITEM” .

9) The following trigger will maximize the screen and will fill the poplist with all existing tables in the current user’s account

WHEN-NEW-FORM-INSTANCE

set_window_property('demo_window',window_state,maximize);

set_window_property(Forms_mdi_window,window_state,maximize);

DECLARE

 rg_name VARCHAR2(40) := ‘User_Tables';

 rg_id RecordGroup;

 errcode NUMBER;

BEGIN

 /*

 ** Make sure group doesn't already exist

 */

 rg_id := Find_Group(rg_name);

 /*

 ** If it does not exist, create it and add the two

 ** necessary columns to it.

 */

 IF Id_Null(rg_id) THEN

-- Write the SQL statement that will dynamically fills the list item

 rg_id := Create_Group_From_Query(rg_name,

 'SELECT TNAME,TNAME FROM TAB');

END IF;

 /*

 ** Populate the record group

 */

 errcode := Populate_Group(rg_id);

-- populate list

 populate_list('any_item',rg_id);

END;

10) Write a trigger called WHEN-LIST-CHANGED to fill the picklist in. This trigger is attached to the ANY_ITEM Poplist

Declare

 Dummy number;

Begin

pick_list.create_picklist;

Dummy := pick_list.populate_picklist_with_query(pick_list.list_in, 'select column_name,

column_name en from user_tab_columns

Where table_name = '''||:any_item ||''' order by 1');

pick_list.set_picklist_selection(pick_list.list_in, 1, NULL);

pick_list.display_picklist(pick_list.list_in);

pick_list.display_picklist(pick_list.list_out);

End;

11)Run the form. Invoke the Poplist and choose one of the tables (EMP for example). You will notice that all the column in the EMP will appear in pick_list which is located immediately to the right of the poplist. We call this picklist “List_in”. If you select one of the columns and use the => Push button, the column will move to the other picklist which we call “List_out”. You can use the < Push Button to move the column back to the List_in etc ..

DYNAMIC SQL

In this section, we will utilize the Picklist just created to construct a dynamic SELECT statement. This Select statement will contain the columns that appear in the List_out and then execute the constructed SQL.

1) Open the Last Form

2) Create a TEXT_ITEM called “RUNTIME_INFO”. Make sure that you change its MAXIMUM LENGTH property to 2000, otherwise you will get runtime error 6502. Also set the ENABLED property to NO and the MULTILINE to YES

3) Create a push-button called “CREATE SQL” that contains the following

WHEN-BUTTON-PRESSED

declare

 string varchar2(2000);

 temp_label varchar2(255);

 temp_num number;

begin

temp_num := nvl(pick_list.get_picklist_element_count(pick_list.list_out),0);

string := 'Select ';

for i in 1..temp_num loop

temp_label := pick_list.get_picklist_element_label(pick_list.list_out, i);

If i > 1 then

string := string || ', ' || temp_label;

else

 string := string || temp_label;

 end if;

end loop;

String := string||' from '||:any_item;

:runtime_info := string;

end;

4) Run the Form, Pick one of the available table, Pick some of its column and activate the CREATE SQL Push Button and you should get something like the following:

[image: image5.png]
5) Now that we were able to construct the SQL, the remaining task is to execute this statement and display the results. This is by no means an easy task. And therefore, we are going to resort to a library module called EXEC_SQL.PLL. The reader is advised to consult the document “\orawin95\tools\doc20\exec_sql.pdf” for a thorough discussion about this library.
6) Attach the EXEC_SQL.PLL library which is located in \orawin95\oca20\plsqllib.

7) Open the form called EXEC_SQL.FMB which is located in

8) “\ORAWIN95\TOOLS\DEVDEM20\DEMO\FORMS\ “

9) Locate the package that is called DYNAMIC. Drag the Package specifications and the Package body the program unit section of your form. Also drag the procedure called HANDLE_ERROR and drop them in the Program Unit of your Form

10)Open the Package and delete the following two procedures.

NEW_CONNECT

CLEAR_RESULTS

11)Create a DISPLAY_ITEM called SQL_STATMENT. Make sure it is at least 2000. It should be synchronized with the item RUNTIME_INFO. The only purpose of SQL_STATEMENT item is to have a copy of the SQL statement that was previously constructed. The DYNAMIC Package that was copied into this Form expects to find the SQL to be executed in an item called SQL_STATEMENT. The block that contains SQL_STATMENT should be called Dynamic.

11)Create a PopList item called QUERY_RESULTS. Change the List Style to T-LIST

12) Modify the NEW-FORM-INSTANCE trigger. YOU MUST MAKE A CALL TO OPEN_CURSOR as follows

DYNAMIC.ConHandle:=EXEC_SQL.OPEN_CONNECTION(‘SCOTT/TIGER’);

12)Add a Push Button called EXECUTE and attach the following trigger to it

WHEN-BUTTON-PRESSED

Dynamic.execute_sql;

13) Run the Form and choose the EMP table from the Tables Poplist. Pick all Columns. Click on CREATE SQL Push Button. Click the EXECUTE Push Button and examine the output.

[image: image6.png]
Adding Calendar Functionality Using ActiveX Controls

The Web Site www.thebustergroup.com contains a calendar OCX that when imported to your Form can add Calendar functionality very easily, actually much easier that the previous approach. The disadvantage of the OCX approach is the fact that OCX’s are not portable and the second disadvantage is that you need to license this OCX and make it available everywhere your application will run.

The following steps will lead you through the successful implementation of Calendar utilization in ActiveX format
1)
Download the Calendar OCX from the above-mentioned site.

2)
Unzip and install the OCX.

3)
Create a standard Form based on the EMP Table.

4)
Change the item_type property of Hiredate item to ActiveX Control

5)
In the Layout Editor, Select the Hiredate item and Right Click on it.

6)
Choose “INSERT OBJECT”

7) Look for an ActiveX Control called ActiveCalendar 2.0 and select it

8) Run the Form

9) You will get something similar to the following:

[image: image7.png]
You can change some of the properties of the calendar. For example you may wish to change the label “Today” of the Push Button.

The following steps will guide you:

1) In Forms Builder, select the Program Menu(OLE Importer.

2) From the list of available OLE Classes, choose the Calendar.ActiveCalender class

3) Highlight the method packages and press OK

4) The following code will change the “Today” Label to “Sysdate”

Declare

X varchar2(200);

Begin

X:=:item(‘Sysdate’).ocx.calendar.activecaledar.actodaycaption;

End;

Conclusion:

The various examples explained in this paper were meant to shed some light on how object reusability can be used to generate advanced Forms. What has been shown is only a little and so much more is available especially in the AcitveX arena. Object Libraries allows the developer to save so much time and achieve high level of standardization. The author wishes to share ideas with others who are interested in similar trends. Please send your comments to sajdi@firstnet.com.jo
About the Author:

Ammar Sajdi is an independent ORACLE consultant. He is currently running his business in Amman, Jordan. He provides professional ORACLE workshops and consulting in many area including Application Tuning, Arabization, database administration as well as development using WEB enabled DEVELOPER/2000 and DESIGNER/2000. He was privileged to obtain a BS degree from the Electrical and Computer Engineering department at the University of Illinois at Urbana-Champaign, USA, and then a MS degree in Electrical Engineering from Jordan University, Jordan. Ammar submitted more than Siz papers in various Oracle Conferences in the Middle East, Europe and USA and is a Certified DataBase Administrators

Palestine Engineering Co.

POBOX 17187

Fax 962-6-5826602

E-mail: sajdi@firstnet.com.jo

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

[image: image8.png][image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png]_970248550

_970248685

_970248890

_970248643

_970234737

_970234881

_970234468

_970039203

_970210501

