
IBML

Data Modeling Techniques for Data Warehousing

Chuck Ballard, Dirk Herreman, Don Schau, Rhonda Bell,
Eunsaeng Kim, Ann Valencic

International Technical Support Organization

http://www.redbooks.ibm.com

SG24-2238-00

International Technical Support Organization

Data Modeling Techniques for Data Warehousing

February 1998

SG24-2238-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 183.

First Edition (February 1998)

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xi

Preface . xii i
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction . 1
1.1 Who Should Read This Book . 2
1.2 Structure of This Book . 2

Chapter 2. Data Warehousing . 5
2.1 A Solution, Not a Product . 5
2.2 Why Data Warehousing? . 5
2.3 Short History . 6

Chapter 3. Data Analysis Techniques . 9
3.1 Query and Reporting . 10
3.2 Multidimensional Analysis . 11
3.3 Data Mining . 12
3.4 Importance to Modeling . 13

Chapter 4. Data Warehousing Architecture and Implementation Choices . . . 15
4.1 Architecture Choices . 15

4.1.1 Global Warehouse Architecture . 15
4.1.2 Independent Data Mart Architecture . 17
4.1.3 Interconnected Data Mart Architecture 18

4.2 Implementation Choices . 18
4.2.1 Top Down Implementation . 19
4.2.2 Bottom Up Implementation . 20
4.2.3 A Combined Approach . 21

Chapter 5. Architecting the Data . 23
5.1 Structuring the Data . 23

5.1.1 Real-Time Data . 24
5.1.2 Derived Data . 24
5.1.3 Reconciled Data . 24

5.2 Enterprise Data Model . 25
5.2.1 Phased Enterprise Data Modeling . 25
5.2.2 A Simple Enterprise Data Model . 26
5.2.3 The Benefits of EDM . 27

5.3 Data Granularity Model . 28
5.3.1 Granularity of Data in the Data Warehouse 28
5.3.2 Multigranularity Modeling in the Corporate Environment 30

5.4 Logical Data Partitioning Model . 30
5.4.1 Partitioning the Data . 31

5.4.1.1 The Goals of Partitioning . 31
5.4.1.2 The Criteria of Partitioning . 31

5.4.2 Subject Area . 32

 Copyright IBM Corp. 1998 iii

Chapter 6. Data Modeling for a Data Warehouse 35
6.1 Why Data Modeling Is Important . 35

Visualization of the business world . 35
The essence of the data warehouse architecture 36
Different approaches of data modeling 36

6.2 Data Modeling Techniques . 36
6.3 ER Modeling . 37

6.3.1 Basic Concepts . 37
6.3.1.1 Entity . 37
6.3.1.2 Relationship . 38
6.3.1.3 Attributes . 38
6.3.1.4 Other Concepts . 39

6.3.2 Advanced Topics in ER Modeling . 39
6.3.2.1 Supertype and Subtype . 39
6.3.2.2 Constraints . 40
6.3.2.3 Derived Attributes and Derivation Functions 41

6.4 Dimensional Modeling . 42
6.4.1 Basic Concepts . 42

6.4.1.1 Fact . 42
6.4.1.2 Dimension . 42

Dimension Members . 43
Dimension Hierarchies . 43

6.4.1.3 Measure . 43
6.4.2 Visualization of a Dimensional Model 43
6.4.3 Basic Operations for OLAP . 44

6.4.3.1 Drill Down and Roll Up . 44
6.4.3.2 Slice and Dice . 45

6.4.4 Star and Snowflake Models . 45
6.4.4.1 Star Model . 46
6.4.4.2 Snowflake Model . 46

6.4.5 Data Consolidation . 47
6.5 ER Modeling and Dimensional Modeling . 47

Chapter 7. The Process of Data Warehousing 49
7.1 Manage the Project . 50
7.2 Define the Project . 51
7.3 Requirements Gathering . 51

7.3.1 Source-Driven Requirements Gathering 52
7.3.2 User-Driven Requirements Gathering 53
7.3.3 The CelDial Case Study . 53

7.4 Modeling the Data Warehouse . 53
7.4.1 Creating an ER Model . 54
7.4.2 Creating a Dimensional Model . 55

7.4.2.1 Dimensions and Measures . 55
7.4.2.2 Adding a Time Dimension . 57
7.4.2.3 Creating Facts . 58
7.4.2.4 Granularity, Additivity, and Merging Facts 58

Granularity and Additivity . 60
Fact Consolidation . 60

7.4.2.5 Integration with Existing Models . 64
7.4.2.6 Sizing Your Model . 65

7.4.3 Don′ t Forget the Metadata . 66
7.4.4 Validating the Model . 68

7.5 Design the Warehouse . 69
7.5.1 Data Warehouse Design versus Operational Design 69

iv Data Modeling Techniques for Data Warehousing

7.5.2 Identifying the Sources . 71
7.5.3 Cleaning the Data . 72
7.5.4 Transforming the Data . 72

7.5.4.1 Capturing the Source Data . 73
7.5.4.2 Generating Keys . 73
7.5.4.3 Getting from Source to Target . 74

7.5.5 Designing Subsidiary Targets . 76
7.5.6 Validating the Design . 77
7.5.7 What About Data Mining? . 77

7.5.7.1 Data Scoping . 78
7.5.7.2 Data Selection . 78
7.5.7.3 Data Cleaning . 78
7.5.7.4 Data Transformation . 79
7.5.7.5 Data Summarization . 79

7.6 The Dynamic Warehouse Model . 79

Chapter 8. Data Warehouse Modeling Techniques 81
8.1 Data Warehouse Modeling and OLTP Database Modeling 81

8.1.1 Origin of the Modeling Differences . 82
8.1.2 Base Properties of a Data Warehouse 82
8.1.3 The Data Warehouse Computing Context 84
8.1.4 Setting Up a Data Warehouse Modeling Approach 85

8.2 Principal Data Warehouse Modeling Techniques 86
8.3 Data Warehouse Modeling for Data Marts 86
8.4 Dimensional Modeling . 88

8.4.1 Requirements Gathering . 92
8.4.1.1 Process Oriented Requirements 93
8.4.1.2 Information-Oriented Requirements 95

8.4.2 Requirements Analysis . 96
8.4.2.1 Determining Candidate Measures, Dimensions, and Facts 98

Candidate Measures . 98
Candidate Dimensions . 99
Candidate Facts . 100

8.4.2.2 Creating the Initial Dimensional Model 105
Establishing the Business Directory 105
Determining Facts and Dimension Keys 106
Determining Representative Dimensions and Detailed Versus

Consolidated Facts . 109
Dimensions and Their Roles in a Dimensional Model 111
Getting the Measures Right . 112
Fact Attributes Other Than Dimension Keys and Measures 114

8.4.3 Requirements Validation . 115
8.4.4 Requirements Modeling - CelDial Case Study Example 117

8.4.4.1 Modeling of Nontemporal Dimensions 120
The Product Dimension . 121

Analyzing the Extended Product Dimension 123
Looking for Fundamental Aggregation Paths 124

The Manufacturing Dimension . 125
The Customer Dimension . 126
The Sales Organization Dimension . 126
The Time Dimension . 127

8.4.4.2 Developing the Basis of a Time Dimension Model 127
About Aggregation Paths above Week 128

Business Time Periods and Business-Related Time Attributes . . 130
Making the Time Dimension Model More Generic 131

Contents v

Flattening the Time Dimension Model into a Dimension Table . . . 132
The Time Dimension As a Means for Consistency 132
Lower Levels of Time Granularity . 133

8.4.4.3 Modeling Slow-Varying Dimensions 133
About Keys in Dimensions of a Data Warehouse 133
Dealing with Attribute Changes in Slow-Varying Dimensions 135
Modeling Time-Variancy of the Dimension Hierarchy 137

8.4.4.4 Temporal Data Modeling . 139
Preliminary Considerations . 141

Time Stamp Interpretations . 143
Instant and Interval Time Stamps 144

Base Temporal Modeling Techniques 145
Adding Time Stamps to Entities . 145
Restructuring the Entities . 146
Adding Entities for Transactions and Events 148
Grouping Time-Variant Classes of Attributes 149

Advanced Temporal Modeling Techniques 149
Adding Temporal Constraints to a Model 149
Modeling Lifespan Histories of Database Objects 150
Modeling Time-Variancy at the Schema Level 150

Some Conclusions . 150
8.4.4.5 Selecting a Data Warehouse Modeling Approach 151

Considerations for ER Modeling . 152
Considerations for Dimensional Modeling 152
Two-Tiered Data Modeling . 152
Dimensional Modeling Supporting Drill Across 153
Modeling Corporate Historical Databases 153

Chapter 9. Selecting a Modeling Tool . 155
9.1 Diagram Notation . 155

9.1.1 ER Modeling . 155
9.1.2 Dimensional Modeling . 156

9.2 Reverse Engineering . 156
9.3 Forward Engineering . 156
9.4 Source to Target Mapping . 157
9.5 Data Dictionary (Repository) . 157
9.6 Reporting . 158
9.7 Tools . 158

Chapter 10. Populating the Data Warehouse 159
10.1 Capture . 159
10.2 Transform . 161
10.3 Apply . 161
10.4 Importance to Modeling . 162

Appendix A. The CelDial Case Study . 163
A.1 CelDial - The Company . 163
A.2 Project Definition . 163
A.3 Defining the Business Need . 164

A.3.1 Life Cycle of a Product . 164
A.3.2 Anatomy of a Sale . 165
A.3.3 Structure of the Organization . 165
A.3.4 Defining Cost and Revenue . 165
A.3.5 What Do the Users Want? . 166

A.4 Getting the Data . 167

vi Data Modeling Techniques for Data Warehousing

A.5 CelDial Dimensional Models - Proposed Solution 167
A.6 CelDial Metadata - Proposed Solution . 170

Appendix B. Special Notices . 183

Appendix C. Related Publications . 185
C.1 International Technical Support Organization Publications 185
C.2 Redbooks on CD-ROMs . 185
C.3 Other Publications . 185

C.3.1 Books . 185
C.3.2 Journal Articles, Technical Reports, and Miscellaneous Sources . 186

How to Get ITSO Redbooks . 189
How IBM Employees Can Get ITSO Redbooks 189
How Customers Can Get ITSO Redbooks . 190
IBM Redbook Order Form . 191

Glossary . 193

Index . 195

ITSO Redbook Evaluation . 197

Contents vii

viii Data Modeling Techniques for Data Warehousing

Figures

 1. Data Analysis . 9
 2. Query and Reporting . 10
 3. Drill-Down and Roll-Up Analysis . 12
 4. Data Mining . 13
 5. Global Warehouse Architecture . 16
 6. Data Mart Architectures . 17
 7. Top Down Implementation . 19
 8. Bottom Up Implementation . 20
 9. The Phased Enterprise Data Model (EDM) 25
10. A Simple Enterprise Data Model . 27
11. Granularity of Data: . 29
12. A Sample ER Model . 38
13. Supertype and Subtype . 41
14. Multiple Hierarchies in a Time Dimension 43
15. The Cube: A Metaphor for a Dimensional Model 44
16. Example of Drill Down and Roll Up . 45
17. Example of Slice and Dice . 46
18. Star Model . 47
19. Snowflake Model . 48
20. Data Warehouse Development Life Cycle 49
21. Two Approaches . 52
22. Corporate Dimensions: Step One . 54
23. Corporate Dimensions: Step Two . 55
24. Dimensions of CelDial Required for the Case Study 58
25. Initial Facts . 59
26. Intermediate Facts . 61
27. Merging Fact 3 into Fact 2 . 62
28. Merging Fact 4 into the Result of Fact 2 and Fact 3 62
29. Final Facts . 63
30. Inventory Model . 64
31. Sales Model . 64
32. Warehouse Metadata . 68
33. Dimensional and ER Views of Product-Related Data 70
34. The Complete Metadata Diagram for the Data Warehouse 77
35. Metadata Changes in the Production Data Warehouse Environment . . 80
36. Use of the Warehouse Model throughout the Life Cycle 80
37. Base Properties of a Data Warehouse . 83
38. Data Warehouse Computing Context . 84
39. Data Marts . 87
40. Dimensional Modeling Activities . 89
41. Schematic Notation Technique for Requirements Analysis 90
42. Requirements Analysis Activities . 90
43. Requirements Validation . 91
44. Requirements Modeling . 91
45. Categories of (Informal) End-User Requirements 93
46. Data Models in the Data Warehouse Modeling Process 96
47. Overview of Initial Dimensional Modeling 97
48. Notation Technique for Schematically Documenting Initial Dimensional

Models . 97
49. Facts Representing Business Transactions and Events 102
50. Inventory Fact Representing the Inventory State 103

 Copyright IBM Corp. 1998 ix

51. Inventory Fact Representing the Inventory State Changes 104
52. Initial Dimensional Models for Sales and Inventory 105
53. Inventory State Fact at Product Component and Inventory Location

Granularity . 107
54. Inventory State Change Fact Made Unique through Adding the

Inventory Movement Transaction Dimension Key 108
55. Determinant Sets of Dimension Keys for the Sales and Inventory Facts

for the CelDial Case . 109
56. Corporate Sales and Retail Sales Facts and Their Associated

Dimensions . 110
57. Two Solutions for the Consolidated Sales Fact and How the

Dimensions Can Be Modeled . 111
58. Dimension Keys and Their Roles for Facts in Dimensional Models . . 112
59. Degenerate Keys, Status Tracking Attributes, and Supportive Attributes

in the CelDial Model . 115
60. Requirements Validation Process . 116
61. Requirements Modeling Activities . 117
62. Star Model for the Sales and Inventory Facts in the CelDial Case Study 118
63. Snowflake Model for the Sales and Inventory Facts in the CelDial Case

Study . 118
64. Roll Up and Drill Down against the Inventory Fact 119
65. Sample CelDial Dimension with Parallel Aggregation Paths 120
66. Inventory and Sales Facts and Their Dimensions in the CelDial Case

Study . 120
67. Inventory Fact and Associated Dimensions in the Extended CelDial

Case Study . 122
68. Sales Fact and Associated Dimensions in the Extended CelDial Case

Study . 123
69. Base Calendar Elements of the Time Dimension 127
70. About Aggregation Paths from Week to Year 129
71. Business-Related Time Dimension Model Artifacts 130
72. The Time Dimension Model Incorporating Several Business-Related

Model Artifacts . 131
73. The Time Dimension Model with Generic Business Periods 131
74. The Flattened Time Dimension Model . 132
75. Time Variancy Issues of Keys in Dimensions 134
76. Dealing with Attribute Changes in Slow-Varying Dimensions 136
77. Modeling Time-Variancy of the Dimension Hierarchy 138
78. Modeling Hierarchy Changes in Slow-Varying Dimensions 139
79. Adding Time As a Dimension to a Nontemporal Data Model 140
80. Nontemporal Model for MovieDB . 141
81. Temporal Modeling Styles . 142
82. Continuous History Model . 143
83. Different Interpretations of Time . 143
84. Instant and Interval Time Stamps . 144
85. Adding Time Stamps to the MovieDB Entities 145
86. Redundancy Caused by Merging Volatility Classes 147
87. Director and Movie Volatility Classes . 148
88. Temporal Model for MovieDB . 149
89. Grouping of Time-Variant Classes of Attributes 149
90. Populating the Data Warehouse . 159
91. CelDial Organization Chart . 166
92. Subset of CelDial Corporate ER Model 168
93. Dimensional Model for CelDial Product Sales 169
94. Dimensional Model for CelDial Product Inventory 170

x Data Modeling Techniques for Data Warehousing

Tables

 1. Dimensions, Measures, and Related Questions 56
 2. Size Estimates for CelDial′s Warehouse 66
 3. Capture Techniques . 160

 Copyright IBM Corp. 1998 xi

xii Data Modeling Techniques for Data Warehousing

Preface

This redbook gives detail coverage to the topic of data modeling techniques for
data warehousing, within the context of the overall data warehouse development
process. The process of data warehouse modeling, including the steps required
before and after the actual modeling step, is discussed. Detailed coverage of
modeling techniques is presented in an evolutionary way through a gradual, but
well-managed, expansion of the content of the actual data model. Coverage is
also given to other important aspects of data warehousing that affect, or are
affected by, the modeling process. These include architecting the warehouse
and populating the data warehouse. Guidelines for selecting a data modeling
tool that is appropriate for data warehousing are presented.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world
working for the IBM International Technical Support Organization San Jose
center.

Chuck Ballard was the project manager for the development of the book and is
currently a data warehousing consultant at the IBM International Technical
Support Organization-San Jose center. He develops, staffs, and manages
projects to explore current topics in data warehousing that result in the delivery
of technical workshops, papers, and IBM Redbooks. Chuck writes extensively
and lectures worldwide on the subject of data warehousing. Before joining the
ITSO, he worked at the IBM Santa Teresa Development Lab, where he was
responsible for developing strategies, programs, and market support
deliverables on data warehousing.

Dirk Herreman is a senior data warehousing consultant for CIMAD Consultants in
Belgium. He leads a team of data warehouse consultants, data warehouse
modelers, and data and system architects for data warehousing and operates
with CIMAD Consultants within IBM′s Global Services. Dirk has more than 15
years of experience with databases, most of it from an application development
point of view. For the last couple of years in particular, his work has focused
primarily on the development of process and architecture models and the
associated techniques for evolutionary data warehouse development. As a
result of this work, Dirk and his team are now the prime developers of course
and workshop materials for IBM′s worldwide education curriculum for data
warehouse enablement. He holds a degree in mathematics and in computer
sciences from the State University of Ghent, Belgium.

Don Schau is an Information Consultant for the City of Winnipeg. He holds a
diploma in analysis and programming from Red River Community College. He
has 20 years of experience in data processing, the last 8 in data and database
management, with a focus on data warehousing in the past 2 years. His areas of
expertise include data modeling and data and database management. Don
currently resides in Winnipeg, Manitoba, Canada with his wife, Shelley, and their
four children.

Rhonda Bell is an I/T Architect in the Business Intelligence Services Practice for
IBM Global Services based in Austin, Texas. She has 5 years of experience in
data processing. Rhonda holds a degree in computer information systems from

 Copyright IBM Corp. 1998 xiii

Southwest Texas State University. Her areas of expertise include data modeling
and client/server and data warehouse design and development.

Eunsaeng Kim is an Advisory Sales Specialist in Banking, Finance and Securities
Industry (BFSI) for IBM Korea. He has seven years of experience in data
processing, the last five years in banking data warehouse modeling and
implementation for four Korean commercial banks. He holds a degree in
economics from Seoul National University in Seoul, Korea. His areas of
expertise include data modeling, data warehousing, and business subjects in
banking and finance industry. Eunsaeng currently resides in Seoul, Korea with
his wife, Eunkyung and their two sons.

Ann Valencic is a Senior Systems Specialist in the Software Services Group in
IBM Australia. She has 12 years of experience in data processing, specializing
in database and data warehouse. Ann ′s areas of expertise include database
design and performance tuning.

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 197 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

xiv Data Modeling Techniques for Data Warehousing

Chapter 1. Introduction

Businesses of all sizes and in different industries, as well as government
agencies, are finding that they can realize significant benefits by implementing a
data warehouse. It is generally accepted that data warehousing provides an
excellent approach for transforming the vast amounts of data that exist in these
organizations into useful and reliable information for getting answers to their
questions and to support the decision making process. A data warehouse
provides the base for the powerful data analysis techniques that are available
today such as data mining and multidimensional analysis, as well as the more
traditional query and reporting. Making use of these techniques along with data
warehousing can result in easier access to the information you need for more
informed decision making.

The question most asked now is, How do I build a data warehouse? This is a
question that is not so easy to answer. As you will see in this book, there are
many approaches to building one. However, at the end of all the research,
planning, and architecting, you will come to realize that it all starts with a firm
foundation. Whether you are building a large centralized data warehouse, one
or more smaller distributed data warehouses (sometimes called data marts), or
some combination of the two, you will always come to the point where you must
decide on how the data is to be structured. This is, after all, one of the most key
concepts in data warehousing and what differentiates it from the more typical
operational database and decision support application building. That is, you
structure the data and build applications around it rather than structuring
applications and bringing data to them.

How will you structure the data in your data warehouse? The purpose of this
book is to help you with that decision. It all revolves around data modeling.
Everyone will have to develop a data model; the decision is how much effort to
expend on the task and what type of data model should be used. There are new
data modeling techniques that have become popular in recent years and provide
excellent support for data warehousing. This book discusses those techniques
and offers some considerations for their selection in a data warehousing
environment.

Data warehouse modeling is a process that produces abstract data models for
one or more database components of the data warehouse. It is one part of the
overall data warehouse development process, which is comprised of other major
processes such as data warehouse architecture, design, and construction. We
consider the data warehouse modeling process to consist of all tasks related to
requirements gathering, analysis, validation, and modeling. Typically for data
warehouse development, these tasks are difficult to separate. The book covers
data warehouse design only at a superficial level. This may suggest a rather
broad gap between modeling and design activities, which in reality certainly is
not the case. The separation between modeling and design is done for practical
reasons: it is our intention to cover the modeling activities and techniques quite
extensively. Therefore, covering data warehouse design as extensively simply
could not be done within the scope of this book.

The need to model data warehouse databases in a way that differs from
modeling operational databases has been promoted in many textbooks. Some
trend-setting authors and data warehouse consultants have taken this point to
what we consider to be the extreme. That is, they are presenting what they are

 Copyright IBM Corp. 1998 1

calling a totally new approach to data modeling. It is called dimensional data
modeling, or fact/dimension modeling. Fancy names have been invented to refer
to different types of dimensional models, such as star models and snowflake
models. Numerous arguments have been presented against traditional
entity-relationship (ER) modeling, when used for modeling data in the data
warehouse. Rather than taking this more extreme position, we believe that
every technique has its area of usability. For example, we do support the many
criticisms of ER modeling when considered in a specific context of data
warehouse data modeling, and there are also criticisms of dimensional
modeling. There are many types of data warehouse applications for which ER
modeling is not well suited, especially those that address the needs of a
well-identified community of data analysts interested primarily in analyzing their
business measures in their business context. Likewise, there are data
warehouse applications that are not well supported at all by star or snowflake
models alone. For example, dimensional modeling is not very suitable for
making large, corporatewide data models for a data warehouse.

With the changing data warehouse landscape and the need for data warehouse
modeling, the new modeling approaches and the controversies surrounding
traditional modeling and the dimensional modeling approach all merit
investigation. And that is another purpose of this book. Because it presents
details of data warehouse modeling processes and techniques, the book can
also be used as an initiating textbook for those who want to learn data
warehouse modeling.

1.1 Who Should Read This Book
This book is intended for those involved in the development, implementation,
maintenance, and administration of data warehouses. It is also applicable for
project planners and managers involved in data warehousing.

To benefit from this book, the reader should have, at least, a basic
understanding of ER modeling.

It is worthwhile for those responsible for developing a data warehouse to
progress sequentially through the entire book. Those less directly involved in
data warehouse modeling should refer to 1.2, “Structure of This Book” to
determine which chapters will be of interest.

1.2 Structure of This Book
In Chapter 2, “Data Warehousing” on page 5, we begin with an exploration of
the evolution of the concept of data warehousing, as it relates to data modeling
for the data warehouse. We discuss the subject of data marts and distinguish
them from data warehouses. After having read Chapter 1, you should have a
clear perception of data modeling in the context of data mart and/or data
warehouse development.

Chapter 3, “Data Analysis Techniques” on page 9 surveys several methods of
data analysis in data warehousing. Query and reporting, multidimensional
analysis, and data mining run the spectrum of being analyst driven to analyst
assisted to data driven. Because of this spectrum, each of the data analysis
methods affects data modeling.

2 Data Modeling Techniques for Data Warehousing

Chapter 4, “Data Warehousing Architecture and Implementation Choices” on
page 15 discusses the architecture and implementation choices available for
data warehousing. The architecture of the data warehouse environment is
based on where the data warehouses and/or data marts reside and where the
control of the data exists. Three architecture choices are presented: the global
warehouse, independent data marts, and interconnected data marts. There are
several ways to implement these architecture choices: top down, bottom up, or
stand alone. These three implementation choices offer flexibility in choosing an
architecture and deploying the resources to create the data warehouse and/or
data marts within the organization.

Chapter 5, “Architecting the Data” on page 23 addresses the approaches and
techniques suitable for architecting the data in the data warehouse. Information
requirements can be satisfied by three types of business data: real-time,
reconciled, and derived. The Enterprise Data Model (EDM) could be very helpful
in data warehouse data modeling, if you have one. For example, from the EDM
you could derive the general scope and understanding of the business
requirements, and you could link the EDM to the physical area of interest. Also
discussed in this chapter is the importance of data granularity, or level of detail
of the data.

Chapter 6, “Data Modeling for a Data Warehouse” on page 35 presents the
basics of data modeling for the data warehouse. Two major approaches are
described. First we present the highlights of ER modeling, identify the major
components of ER models, and describe their properties. Next, we introduce the
basic concepts of dimensional modeling and present and position two
fundamental approaches: Star modeling and Snowflake. We also position the
different approaches by contrasting ER and dimensional modeling, and Stars and
Snowflakes. We also identify how and when the different approaches can be
used as complementary, and how the different models and techniques can be
mapped.

In Chapter 7, “The Process of Data Warehousing” on page 49, we present a
process model for data warehouse modeling. This is one of the core chapters of
this book. Data modeling techniques are covered extensively in Chapter 8,
“Data Warehouse Modeling Techniques” on page 81, but they can only be
appreciated and well used if they are part of a well-managed data warehouse
modeling process. The process model we use as the base for this book is an
evolutionary, user-centric approach. It is one that focuses on end-user
requirements first (rather than on the data sources) and recognizes that data
warehouses and data marts typically are developed with a bottom-up approach.

Chapter 8, “Data Warehouse Modeling Techniques” on page 81 covers the core
data modeling techniques for the data warehouse development process. The
chapter has two major sections. In the first section, we present the techniques
suitable for developing a data warehouse or a data mart that suits the needs of a
particular community of end users or data analysts. In the second section, we
explore the data warehouse modeling techniques suitable for expanding the
scope of a data mart or a data warehouse. The techniques presented in this
chapter are of particular interest for those organizations that develop their data
marts or data warehouses in an evolutionary way; that is, through a gradual, but
well-managed, expansion of the scope of content of what has already been
implemented.

Chapter 1. Introduction 3

Chapter 9, “Selecting a Modeling Tool” on page 155, an overview of the
functions that a data modeling tool, or suite of tools, must support for modeling
the data warehouse is presented. Also presented is a partial list of tools
available at the time this redbook was written.

Chapter 10, “Populating the Data Warehouse” on page 159 discusses the
process of populating the data warehouse or data mart. Populating is the
process of getting the source data from the operational and external systems
into the data warehouse and data marts. This process consists of a capture
step, a transform step, and an apply step. Also discussed in this chapter is the
effect of modeling on the populating process, and, conversely, the effect of
populating on modeling.

4 Data Modeling Techniques for Data Warehousing

Chapter 2. Data Warehousing

In this chapter we position data warehousing as more than just a product, or set
of products—it is a solution! It is an information environment that is separate
from the more typical transaction-oriented operational environment. Data
warehousing is, in and of itself, an information environment that is evolving as a
critical resource in today ′s organizations.

2.1 A Solution, Not a Product
Often we think that a data warehouse is a product, or group of products, that we
can buy to help get answers to our questions and improve our decision-making
capability. But, it is not so simple. A data warehouse can help us get answers
for better decision making, but it is only one part of a more global set of
processes. As examples, where did the data in the data warehouse come from?
How did it get into the data warehouse? How is it maintained? How is the data
structured in the data warehouse? What is actually in the data warehouse?
These are all questions that must be answered before a data warehouse can be
built. We prefer to discuss the more global environment, and we refer to it as
data warehousing.

Data warehousing is the design and implementation of processes, tools, and
facilities to manage and deliver complete, timely, accurate, and understandable
information for decision making. It includes all the activities that make it
possible for an organization to create, manage, and maintain a data warehouse
or data mart.

2.2 Why Data Warehousing?
The concept of data warehousing has evolved out of the need for easy access to
a structured store of quality data that can be used for decision making. It is
globally accepted that information is a very powerful asset that can provide
significant benefits to any organization and a competitive advantage in the
business world. Organizations have vast amounts of data but have found it
increasingly difficult to access it and make use of it. This is because it is in
many different formats, exists on many different platforms, and resides in many
different file and database structures developed by different vendors. Thus
organizations have had to write and maintain perhaps hundreds of programs
that are used to extract, prepare, and consolidate data for use by many different
applications for analysis and reporting. Also, decision makers often want to dig
deeper into the data once initial findings are made. This would typically require
modification of the extract programs or development of new ones. This process
is costly, inefficient, and very time consuming. Data warehousing offers a better
approach.

Data warehousing implements the process to access heterogeneous data
sources; clean, filter, and transform the data; and store the data in a structure
that is easy to access, understand, and use. The data is then used for query,
reporting, and data analysis. As such, the access, use, technology, and
performance requirements are completely different from those in a
transaction-oriented operational environment. The volume of data in data
warehousing can be very high, particularly when considering the requirements

 Copyright IBM Corp. 1998 5

for historical data analysis. Data analysis programs are often required to scan
vast amounts of that data, which could result in a negative impact on operational
applications, which are more performance sensitive. Therefore, there is a
requirement to separate the two environments to minimize conflicts and
degradation of performance in the operational environment.

2.3 Short History
The origin of the concept of data warehousing can be traced back to the early
1980s, when relational database management systems emerged as commercial
products. The foundation of the relational model with its simplicity, together with
the query capabilities provided by the SQL language, supported the growing
interest in what then was called end-user computing or decision support. To
support end-user computing environments, data was extracted from the
organization′s online databases and stored in newly created database systems
dedicated to supporting ad hoc end-user queries and reporting functions of all
kinds. One of the prime concerns underlying the creation of these systems was
the performance impact of end-user computing on the operational data
processing systems. This concern prompted the requirement to separate
end-user computing systems from transactional processing systems.

In those early days of data warehousing, the extracts of operational data were
usually snapshots or subsets of the operational data. These snapshots were
loaded in an end-user computing (or decision support) database system on a
regular basis, perhaps once a week or once per month. Sometimes a limited
number of versions of these snapshots were even accumulated in the system
while access was provided to end users equipped with query and reporting tools.
Data modeling for these decision support database systems was not much of a
concern. Data models for these decision support systems typically matched the
data models of the operational systems because, after all, they were extracted
snapshots anyhow. One of the frequently occurring remodeling issues then was
to ″normalize″ the data to eliminate the nasty effects of design techniques that
had been applied on the operational systems to maximize their performance, to
eliminate code tables that were difficult to understand, along with other local
cleanup activities. But by and large, the decision support data models were
technical in nature and primarily concerned with providing data available in the
operational application systems to the decision support environment.

The role and purpose of data warehouses in the data processing industry have
evolved considerably since those early days and are still evolving rapidly.
Comparing today′s data warehouses with the early days ′ decision support
databases should be done with great care. Data warehouses should no longer
be identified with database systems that support end-user queries and reporting
functions. They should no longer be conceived as snapshots of operational data.
Data warehouse databases should be considered as new sources of information,
conceived for use by the whole organization or for smaller communities of users
and data analysts within the organization. Simply reengineering source data
models in the traditional way will no longer satisfy the requirements for data
warehousing. Developing data warehouses requires a much more thoughtfully
applied set of modeling techniques and a much closer working relationship with
the business side of the organization.

Data warehouses should also be conceived of as sources of new information.
This statement sounds controversial at first, because there is global agreement
that data warehouses are read-only database systems. The point is, that by

6 Data Modeling Techniques for Data Warehousing

accumulating and consolidating data from different sources, and by keeping this
historical data in the warehouse, new information about the business,
competitors, customers, suppliers, the behavior of the organization ′s business
processes, and so forth, can be unveiled. The value of a data warehouse is no
longer in being able to do ad hoc query and reporting. The real value is realized
when someone gets to work with the data in the warehouse and discovers things
that make a difference for the organization, whatever the objective of the
analytical work may be. To achieve such interesting results, simply
reengineering the source data models will not do.

Chapter 2. Data Warehousing 7

8 Data Modeling Techniques for Data Warehousing

Chapter 3. Data Analysis Techniques

A data warehouse is built to provide an easy to access source of high quality
data. It is a means to an end, not the end itself. That end is typically the need
to perform analysis and decision making through the use of that source of data.
There are several techniques for data analysis that are in common use today.
They are query and reporting, multidimensional analysis, and data mining (see
Figure 1). They are used to formulate and display query results, to analyze data
content by viewing it from different perspectives, and to discover patterns and
clustering attributes in the data that will provide further insight into the data
content.

Figure 1. Data Analysis. Several methods of data analysis are in common use.

The techniques of data analysis can impact the type of data model selected and
its content. For example, if the intent is simply to provide query and reporting
capability, a data model that structures the data in more of a normalized fashion
would probably provide the fastest and easiest access to the data. Query and
reporting capability primarily consists of selecting associated data elements,
perhaps summarizing them and grouping them by some category, and
presenting the results. Executing this type of capability typically might lead to
the use of more direct table scans. For this type of capability, perhaps an ER
model with a normalized and/or denormalized data structure would be most
appropriate.

If the objective is to perform multidimensional data analysis, a dimensional data
model would be more appropriate. This type of analysis requires that the data
model support a structure that enables fast and easy access to the data on the
basis of any of numerous combinations of analysis dimensions. For example,
you may want to know how many of a specific product were sold on a specific
day, in a specific store, in a specific price range. Then for further analysis you
may want to know how many stores sold a specific product, in a specific price
range, on a specific day. These two questions require similar information, but
one viewed from a product perspective and the other viewed from a store
perspective.

Multidimensional analysis requires a data model that will enable the data to
easily and quickly be viewed from many possible perspectives, or dimensions.

 Copyright IBM Corp. 1998 9

Since a number of dimensions are being used, the model must provide a way for
fast access to the data. If a highly normalized data structure were used, many
joins would be required between the tables holding the different dimension data,
and they could significantly impact performance. In this case, a dimensional
data model would be most appropriate.

An understanding of the data and its use will impact the choice of a data model.
It also seems clear that, in most implementations, multiple types of data models
might be used to best satisfy the varying requirements of the data warehouse.

3.1 Query and Reporting
Query and reporting analysis is the process of posing a question to be
answered, retrieving relevant data from the data warehouse, transforming it into
the appropriate context, and displaying it in a readable format. It is driven by
analysts who must pose those questions to receive an answer. You will find that
this is quite different, for example, from data mining, which is data driven. Refer
to Figure 4 on page 13.

Traditionally, queries have dealt with two dimensions, or two factors, at a time.
For example, one might ask, ″How much of that product has been sold this
week?″ Subsequent queries would then be posed to perhaps determine how
much of the product was sold by a particular store. Figure 2 depicts the process
flow in query and reporting. Query definition is the process of taking a business
question or hypothesis and translating it into a query format that can be used by
a particular decision support tool. When the query is executed, the tool
generates the appropriate language commands to access and retrieve the
requested data, which is returned in what is typically called an answer set. The
data analyst then performs the required calculations and manipulations on the
answer set to achieve the desired results. Those results are then formatted to fit
into a display or report template that has been selected for ease of
understanding by the end user. This template could consist of combinations of
text, graphic images, video, and audio. Finally, the report is delivered to the end
user on the desired output medium, which could be printed on paper, visualized
on a computer display device, or presented audibly.

Figure 2. Query and Reporting. The process of query and report ing starts with query definit ion and ends with
report del ivery.

10 Data Modeling Techniques for Data Warehousing

End users are primarily interested in processing numeric values, which they use
to analyze the behavior of business processes, such as sales revenue and
shipment quantities. They may also calculate, or investigate, quality measures
such as customer satisfaction rates, delays in the business processes, and late
or wrong shipments. They might also analyze the effects of business
transactions or events, analyze trends, or extrapolate their predictions for the
future. Often the data displayed will cause the user to formulate another query
to clarify the answer set or gather more detailed information. This process
continues until the desired results are reached.

3.2 Multidimensional Analysis
Multidimensional analysis has become a popular way to extend the capabilities
of query and reporting. That is, rather than submitting multiple queries, data is
structured to enable fast and easy access to answers to the questions that are
typically asked. For example, the data would be structured to include answers to
the question, ″How much of each of our products was sold on a particular day,
by a particular sales person, in a particular store?″ Each separate part of that
query is called a dimension. By precalculating answers to each subquery within
the larger context, many answers can be readily available because the results
are not recalculated with each query; they are simply accessed and displayed.
For example, by having the results to the above query, one would automatically
have the answer to any of the subqueries. That is, we would already know the
answer to the subquery, ″How much of a particular product was sold by a
particular salesperson?″ Having the data categorized by these different factors,
or dimensions, makes it easier to understand, particularly by business-oriented
users of the data. Dimensions can have individual entities or a hierarchy of
entities, such as region, store, and department.

Multidimensional analysis enables users to look at a large number of
interdependent factors involved in a business problem and to view the data in
complex relationships. End users are interested in exploring the data at different
levels of detail, which is determined dynamically. The complex relationships can
be analyzed through an iterative process that includes drilling down to lower
levels of detail or rolling up to higher levels of summarization and aggregation.
Figure 3 on page 12 demonstrates that the user can start by viewing the total
sales for the organization and drill down to view the sales by continent, region,
country, and finally by customer. Or, the user could start at customer and roll up
through the different levels to finally reach total sales. Pivoting in the data can
also be used. This is a data analysis operation whereby the user takes a
different viewpoint than is typical on the results of the analysis, changing the
way the dimensions are arranged in the result. Like query and reporting,
multidimensional analysis continues until no more drilling down or rolling up is
performed.

Chapter 3. Data Analysis Techniques 11

Figure 3. Dril l-Down and Roll-Up Analysis. End users can perform dri l l down or rol l up when using
mult idimensional analysis.

3.3 Data Mining
Data mining is a relatively new data analysis technique. It is very different from
query and reporting and multidimensional analysis in that is uses what is called
a discovery technique. That is, you do not ask a particular question of the data
but rather use specific algorithms that analyze the data and report what they
have discovered. Unlike query and reporting and multidimensional analysis
where the user has to create and execute queries based on hypotheses, data
mining searches for answers to questions that may have not been previously
asked. This discovery could take the form of finding significance in relationships
between certain data elements, a clustering together of specific data elements,
or other patterns in the usage of specific sets of data elements. After finding
these patterns, the algorithms can infer rules. These rules can then be used to
generate a model that can predict a desired behavior, identify relationships
among the data, discover patterns, and group clusters of records with similar
attributes.

Data mining is most typically used for statistical data analysis and knowledge
discovery. Statistical data analysis detects unusual patterns in data and applies
statistical and mathematical modeling techniques to explain the patterns. The
models are then used to forecast and predict. Types of statistical data analysis
techniques include linear and nonlinear analysis, regression analysis,
multivariant analysis, and time series analysis. Knowledge discovery extracts
implicit, previously unknown information from the data. This often results in
uncovering unknown business facts.

Data mining is data driven (see Figure 4 on page 13). There is a high level of
complexity in stored data and data interrelations in the data warehouse that are
difficult to discover without data mining. Data mining offers new insights into the
business that may not be discovered with query and reporting or
multidimensional analysis. Data mining can help discover new insights about
the business by giving us answers to questions we might never have thought to
ask.

12 Data Modeling Techniques for Data Warehousing

Figure 4. Data Mining. Data Mining focuses on analyzing the data content rather than simply responding to
questions.

3.4 Importance to Modeling
The type of analysis that will be done with the data warehouse can determine
the type of model and the model′s contents. Because query and reporting and
multidimensional analysis require summarization and explicit metadata, it is
important that the model contain these elements. Also, multidimensional
analysis usually entails drilling down and rolling up, so these characteristics
need to be in the model as well. A clean and clear data warehouse model is a
requirement, else the end users ′ tasks will become too complex, and end users
will stop trusting the contents of the data warehouse and the information drawn
from it because of highly inconsistent results.

Data mining, however, usually works best with the lowest level of detail
available. Thus, if the data warehouse is used for data mining, a low level of
detail data should be included in the model.

Chapter 3. Data Analysis Techniques 13

14 Data Modeling Techniques for Data Warehousing

Chapter 4. Data Warehousing Architecture and Implementation
Choices

In this chapter we discuss the architecture and implementation choices available
for data warehousing. During the discussions we may use the term data mart.
Data marts, simply defined, are smaller data warehouses that can function
independently or can be interconnected to form a global integrated data
warehouse. However, in this book, unless noted otherwise, use of the term data
warehouse also implies data mart.

Although it is not always the case, choosing an architecture should be done prior
to beginning implementation. The architecture can be determined, or modified,
after implementation begins. However, a longer delay typically means an
increased volume of rework. And, everyone knows that it is more time
consuming and difficult to do rework after the fact than to do it right, or very
close to right, the first time. The architecture choice selected is a management
decision that will be based on such factors as the current infrastructure,
business environment, desired management and control structure, commitment
to and scope of the implementation effort, capability of the technical environment
the organization employs, and resources available.

The implementation approach selected is also a management decision, and one
that can have a dramatic impact on the success of a data warehousing project.
The variables affected by that choice are time to completion,
return-on-investment, speed of benefit realization, user satisfaction, potential
implementation rework, resource requirements needed at any point-in-time, and
the data warehouse architecture selected.

4.1 Architecture Choices
Selection of an architecture will determine, or be determined by, where the data
warehouses and/or data marts themselves will reside and where the control
resides. For example, the data can reside in a central location that is managed
centrally. Or, the data can reside in distributed local and/or remote locations
that are either managed centrally or independently.

The architecture choices we consider in this book are global, independent,
interconnected, or some combination of all three. The implementation choices to
be considered are top down, bottom up, or a combination of both. It should be
understood that the architecture choices and the implementation choices can
also be used in combinations. For example, a data warehouse architecture
could be physically distributed, managed centrally, and implemented from the
bottom up starting with data marts that service a particular workgroup,
department, or line of business.

4.1.1 Global Warehouse Architecture
A global data warehouse is considered one that will support all, or a large part,
of the corporation that has the requirement for a more fully integrated data
warehouse with a high degree of data access and usage across departments or
lines-of-business. That is, it is designed and constructed based on the needs of
the enterprise as a whole. It could be considered to be a common repository for

 Copyright IBM Corp. 1998 15

decision support data that is available across the entire organization, or a large
subset thereof.

A common misconception is that a global data warehouse is centralized. The
term global is used here to reflect the scope of data access and usage, not the
physical structure. The global data warehouse can be physically centralized or
physically distributed throughout the organization. A physically centralized
global warehouse is to be used by the entire organization that resides in a
single location and is managed by the Information Systems (IS) department. A
distributed global warehouse is also to be used by the entire organization, but it
distributes the data across multiple physical locations within the organization
and is managed by the IS department.

When we say that the IS department manages the data warehouse, we do not
necessarily mean that it controls the data warehouse. For example, the
distributed locations could be controlled by a particular department or line of
business. That is, they decide what data goes into the data warehouse, when it
is updated, which other departments or lines of business can access it, which
individuals in those departments can access it, and so forth. However, to
manage the implementation of these choices requires support in a more global
context, and that support would typically be provided by IS. For example, IS
would typically manage network connections. Figure 5 shows the two ways that
a global warehouse can be implemented. In the top part of the figure, you see
that the data warehouse is distributed across three physical locations. In the
bottom part of the figure, the data warehouse resides in a single, centralized
location.

Figure 5. Global Warehouse Architecture. The two primary architecture approaches.

Data for the data warehouse is typically extracted from operational systems and
possibly from data sources external to the organization with batch processes
during off-peak operational hours. It is then filtered to eliminate any unwanted
data items and transformed to meet the data quality and usability requirements.
It is then loaded into the appropriate data warehouse databases for access by
end users.

16 Data Modeling Techniques for Data Warehousing

A global warehouse architecture enables end users to have more of an
enterprisewide or corporatewide view of the data. It should be certain that this
is a requirement, however, because this type of environment can be very time
consuming and costly to implement.

4.1.2 Independent Data Mart Architecture
An independent data mart architecture implies stand-alone data marts that are
controlled by a particular workgroup, department, or line of business and are
built solely to meet their needs. There may, in fact, not even be any connectivity
with data marts in other workgroups, departments, or lines of business. For
example, data for these data marts may be generated internally. The data may
be extracted from operational systems but would then require the support of IS.
IS would not control the implementation but would simply help manage the
environment. Data could also be extracted from sources of data external to the
organization. In this case IS could be involved unless the appropriate skills were
available within the workgroup, department, or line of business. The top part of
Figure 6 depicts the independent data mart structure. Although the figure
depicts the data coming from operational or external data sources, it could also
come from a global data warehouse if one exists.

The independent data mart architecture requires some technical skills to
implement, but the resources and personnel could be owned and managed by
the workgroup, department, or line of business. These types of implementation
typically have minimal impact on IS resources and can result in a very fast
implementation. However, the minimal integration and lack of a more global
view of the data can be a constraint. That is, the data in any particular data
mart will be accessible only to those in the workgroup, department, or line of
business that owns the data mart. Be sure that this is a known and accepted
situation.

Figure 6. Data Mart Architectures. They can be independent or interconnected.

Chapter 4. Data Warehousing Architecture and Implementation Choices 17

4.1.3 Interconnected Data Mart Architecture
An interconnected data mart architecture is basically a distributed
implementation. Although separate data marts are implemented in a particular
workgroup, department, or line of business, they can be integrated, or
interconnected, to provide a more enterprisewide or corporatewide view of the
data. In fact, at the highest level of integration, they can become the global data
warehouse. Therefore, end users in one department can access and use the
data on a data mart in another department. This architecture is depicted in the
bottom of Figure 6 on page 17. Although the figure depicts the data coming
from operational or external data sources, it could also come from a global data
warehouse if one exists.

This architecture brings with it many other functions and capabilities that can be
selected. Be aware, however, that these additional choices can bring with them
additional integration requirements and complexity as compared to the
independent data mart architecture. For example, you will now need to consider
who controls and manages the environment. You will need to consider the need
for another tier in the architecture to contain, for example, data common to
multiple data marts. Or, you may need to elect a data sharing schema across
the data marts. Either of these choices adds a degree of complexity to the
architecture. But, on the positive side, there can be significant benefit to the
more global view of the data.

Interconnected data marts can be independently controlled by a workgroup,
department, or line of business. They decide what source data to load into the
data mart, when to update it, who can access it, and where it resides. They may
also elect to provide the tools and skills necessary to implement the data mart
themselves. In this case, minimal resources would be required from IS. IS
could, for example, provide help in cross-department security, backup and
recovery, and the network connectivity aspects of the implementation. In
contrast, interconnected data marts could be controlled and managed by IS.
Each workgroup, department, or line of business would have its own data mart,
but the tools, skills, and resources necessary to implement the data marts would
be provided by IS.

4.2 Implementation Choices
Several approaches can be used to implement the architectures discussed in
4.1, “Architecture Choices” on page 15. The approaches to be discussed in this
book are top down, bottom up, or a combination of both. These implementation
choices offer flexibility in determining the criteria that are important in any
particular implementation.

The choice of an implementation approach is influenced by such factors as the
current IS infrastructure, resources available, the architecture selected, scope of
the implementation, the need for more global data access across the
organization, return-on-investment requirements, and speed of implementation.

18 Data Modeling Techniques for Data Warehousing

4.2.1 Top Down Implementation
A top down implementation requires more planning and design work to be
completed at the beginning of the project. This brings with it the need to involve
people from each of the workgroups, departments, or lines of business that will
be participating in the data warehouse implementation. Decisions concerning
data sources to be used, security, data structure, data quality, data standards,
and an overall data model will typically need to be completed before actual
implementation begins. The top down implementation can also imply more of a
need for an enterprisewide or corporatewide data warehouse with a higher
degree of cross workgroup, department, or line of business access to the data.
This approach is depicted in Figure 7. As shown, with this approach, it is more
typical to structure a global data warehouse. If data marts are included in the
configuration, they are typically built afterward. And, they are more typically
populated from the global data warehouse rather than directly from the
operational or external data sources.

Figure 7. Top Down Implementation. Creating a corporate infrastructure first.

A top down implementation can result in more consistent data definitions and
the enforcement of business rules across the organization, from the beginning.
However, the cost of the initial planning and design can be significant. It is a
time-consuming process and can delay actual implementation, benefits, and
return-on-investment. For example, it is difficult and time consuming to
determine, and get agreement on, the data definitions and business rules among
all the different workgroups, departments, and lines of business participating.
Developing a global data model is also a lengthy task. In many organizations,
management is becoming less and less willing to accept these delays.

The top down implementation approach can work well when there is a good
centralized IS organization that is responsible for all hardware and other
computer resources. In many organizations, the workgroups, departments, or
lines of business may not have the resources to implement their own data marts.
Top down implementation will also be difficult to implement in organizations
where the workgroup, department, or line of business has its own IS resources.
They are typically unwilling to wait for a more global infrastructure to be put in
place.

Chapter 4. Data Warehousing Architecture and Implementation Choices 19

4.2.2 Bottom Up Implementation
A bottom up implementation involves the planning and designing of data marts
without waiting for a more global infrastructure to be put in place. This does not
mean that a more global infrastructure will not be developed; it will be built
incrementally as initial data mart implementations expand. This approach is
more widely accepted today than the top down approach because immediate
results from the data marts can be realized and used as justification for
expanding to a more global implementation. Figure 8 depicts the bottom up
approach. In contrast to the top down approach, data marts can be built before,
or in parallel with, a global data warehouse. And as the figure shows, data
marts can be populated either from a global data warehouse or directly from the
operational or external data sources.

Figure 8. Bottom Up Implementation. Starts with a data mart and expands over time.

The bottom up implementation approach has become the choice of many
organizations, especially business management, because of the faster payback.
It enables faster results because data marts have a less complex design than a
global data warehouse. In addition, the initial implementation is usually less
expensive in terms of hardware and other resources than deploying the global
data warehouse.

Along with the positive aspects of the bottom up approach are some
considerations. For example, as more data marts are created, data redundancy
and inconsistency between the data marts can occur. With careful planning,
monitoring, and design guidelines, this can be minimized. Multiple data marts
may bring with them an increased load on operational systems because more
data extract operations are required. Integration of the data marts into a more
global environment, if that is the desire, can be difficult unless some degree of
planning has been done. Some rework may also be required as the
implementation grows and new issues are uncovered that force a change to the
existing areas of the implementation. These are all considerations to be
carefully understood before selecting the bottom up approach.

20 Data Modeling Techniques for Data Warehousing

4.2.3 A Combined Approach
As we have seen, there are both positive and negative considerations when
implementing with the top down or the bottom up approach. In many cases the
best approach may be a combination of the two. This can be a difficult
balancing act, but with a good project manager it can be done. One of the keys
to this approach is to determine the degree of planning and design that is
required for the global approach to support integration as the data marts are
being built with the bottom up approach. Develop a base level infrastructure
definition for the global data warehouse, being careful to stay, initially, at a
business level. For example, as a first step simply identify the lines of business
that will be participating. A high level view of the business processes and data
areas of interest to them will provide the elements for a plan for implementation
of the data marts.

As data marts are implemented, develop a plan for how to handle the data
elements that are needed by multiple data marts. This could be the start of a
more global data warehouse structure or simply a common data store
accessible by all the data marts. It some cases it may be appropriate to
duplicate the data across multiple data marts. This is a trade-off decision
between storage space, ease of access, and the impact of data redundancy
along with the requirement to keep the data in the multiple data marts at the
same level of consistency.

There are many issues to be resolved in any data warehousing implementation.
Using the combined approach can enable resolution of these issues as they are
encountered, and in the smaller scope of a data mart rather than a global data
warehouse. Careful monitoring of the implementation processes and
management of the issues could result in gaining the best benefits of both
implementation techniques.

Chapter 4. Data Warehousing Architecture and Implementation Choices 21

22 Data Modeling Techniques for Data Warehousing

Chapter 5. Architecting the Data

A data warehouse is, by definition, a subject-oriented, integrated, time-variant
collection of data to enable decision making across a disparate group of users.
One of the most basic concepts of data warehousing is to clean, filter, transform,
summarize, and aggregate the data, and then put it in a structure for easy
access and analysis by those users. But, that structure must first be defined and
that is the task of the data warehouse model. In modeling a data warehouse, we
begin by architecting the data. By architecting the data, we structure and locate
it according to its characteristics.

In this chapter, we review the types of data used in data warehousing and
provide some basic hints and tips for architecting that data. We then discuss
approaches to developing a data warehouse data model along with some of the
considerations.

Having an enterprise data model (EDM) available would be very helpful, but not
required, in developing the data warehouse data model. For example, from the
EDM you can derive the general scope and understanding of the business
requirements. The EDM would also let you relate the data elements and the
physical design to a specific area of interest.

Data granularity is one of the most important criteria in architecting the data. On
one hand, having data of a high granularity can support any query. However,
having a large volume of data that must be manipulated and managed could be
an issue as it would impact response times. On the other hand, having data of a
low granularity would support only specific queries. But, with the reduced
volume of data, you would realize significant improvements in performance.

The size of a data warehouse varies, but they are typically quite large. This is
especially true as you consider the impact of storing volumes of historical data.
To deal with this issue you have to consider data partitioning in the data
architecture. We consider both logical and physical partitioning to better
understand and maintain the data. In logical partitioning of data, you should
consider the concept of subject areas. This concept is typically used in most
information engineering (IE) methodologies. We discuss subject areas and their
different definitions in more detail later in this chapter.

5.1 Structuring the Data
In structuring the data, for data warehousing, we can distinguish three basic
types of data that can be used to satisfy the requirements of an organization:

• Real-time data

• Derived data

• Reconciled data

In this section, we describe these three types of data according to usage, scope,
and currency. You can configure an appropriate data warehouse based on these
three data types, with consideration for the requirements of any particular
implementation effort. Depending on the nature of the operational systems, the
type of business, and the number of users that access the data warehouse, you

 Copyright IBM Corp. 1998 23

can combine the three types of data to create the most appropriate architecture
for the data warehouse.

5.1.1 Real-Time Data
Real-time data represents the current status of the business. It is typically used
by operational applications to run the business and is constantly changing as
operational transactions are processed. Real-time data is at a detailed level,
meaning high granularity, and is usually accessed in read/write mode by the
operational transactions.

Not confined to operational systems, real-time data is extracted and distributed
to informational systems throughout the organization. For example, in the
banking industry, where real-time data is critical for operational management
and tactical decision making, an independent system, the so-called deferred or
delayed system, delivers the data from the operational systems to the
informational systems (data warehouses) for data analysis and more strategic
decision making.

To use real-time data in a data warehouse, typically it first must be cleansed to
ensure appropriate data quality, perhaps summarized, and transformed into a
format more easily understood and manipulated by business analysts. This is
because the real-time data contains all the individual, transactional, and detailed
data values as well as other data valuable only to the operational systems that
must be filtered out. In addition, because it may come from multiple different
systems, real-time data may not be consistent in representation and meaning.
As an example, the units of measure, currency, and exchange rates may differ
among systems. These anomalies must be reconciled before loading into the
data warehouse.

5.1.2 Derived Data
Derived data is data that has been created perhaps by summarizing, averaging,
or aggregating the real-time data through some process. Derived data can be
either detailed or summarized, based on requirements. It can represent a view
of the business at a specific point in time or be a historical record of the
business over some period of time.

Derived data is traditionally used for data analysis and decision making. Data
analysts seldom need large volumes of detailed data; rather they need
summaries that are much easier for manipulation and use. Manipulating large
volumes of atomic data can also require tremendous processing resources.
Considering the requirements for improved query processing capability, an
efficient approach is to precalculate derived data elements and summarize the
detailed data to better meet user requirements. Efficiently processing large
volumes of data in an appropriate amount of time is one of the most important
issues to resolve.

5.1.3 Reconciled Data
Reconciled data is real-time data that has been cleansed, adjusted, or enhanced
to provide an integrated source of quality data that can be used by data analysts.
The basic requirement for data quality is consistency. In addition, we can create
and maintain historical data while reconciling the data. Thus, we can say
reconciled data is a special type of derived data.

24 Data Modeling Techniques for Data Warehousing

Reconciled data is seldom explicitly defined. It is usually a logical result of
derivation operations. Sometimes reconciled data is stored only as temporary
files that are required to transform operational data for consistency.

5.2 Enterprise Data Model
An EDM is a consistent definition of all of the data elements common to the
business, from a high-level business view to a generic logical data design. It
includes links to the physical data designs of individual applications. Through an
EDM, you can derive the general scope and understanding of the business
requirements.

5.2.1 Phased Enterprise Data Modeling
Many methodologies for enterprise data modeling have been published. Some
publications propose a three-tiered methodology such as conceptual, logical, and
physical data model. In IBM′s Worldwide Solution Design and Delivery Method
(WSDDM), five tiers are described for information engineering approaches:

• ISP - Information System Planning
• BAA - Business Area Analysis
• BSD - Business System Design
• BSI - Business System Implementation
• BSM - Business System Maintenance

Despite the differences of the number of tiers, the common thread is that every
methodology focuses on the phased or layered approach. The phases include
the tasks for information planning, business analyzing, logical data modeling,
and physical data design as shown on Figure 9.

Figure 9. The Phased Enterprise Data Model (EDM)

The size of the phases in Figure 9 represents the amount of information to be
included in that phase of the model. That is, the pyramid shape implies that the
amount of information is minimal at the planning phase but increases
remarkably at the physical data design phase.

The information planning phase at the top of the pyramid provides the highly
consolidated view of the business. In that view, we can identify some number of
business concepts, usually in the range of 10 to 30. Those business concepts

Chapter 5. Architecting the Data 25

can be categorized as a business entity, super entity, or subject area in which an
organization is interested and about which it maintains data elements.
Examples of those are customer, product, organization, schedule, activity, and
policy. The purpose of this phase is to set up the scope and architecture of a
data warehouse and to provide a single, comprehensive point of view for the
other phases.

The business analyzing phase provides a means of further defining the contents
of the primary concepts and categorizing those contents according to various
business rules. This phase is described in business terms so that business
people who have no modeling training can understand it. The purpose of this
phase is to gather and arrange business requirements and define the business
terms specifically.

The logical data modeling phase is primarily enterprisewide in scope and
generic to all applications located below it in the pyramid. The logical data
model typically consists of several hundred entities. It is a complete model that
is in third normal form and contains the identification and definition of all
entities, relationships, and attributes. For further specific analysis, the entities of
the logical data model are sometimes partitioned into views by subject areas or
by applications. Some methodologies divide this phase into two phases:

• Generic logical data model - the enterprise level
• Logical application model - application level of data view

The physical data design applies physical constraints, such as space,
performance, and the physical distribution of data. The purpose of this phase is
to design for the actual physical implementation.

5.2.2 A Simple Enterprise Data Model
In general it is not possible, or practical, to assign resources to all of the
development phases concurrently when constructing an EDM. However, some of
the core components that are required for data warehouse modeling can be
extracted and grouped and used as a phased approach. In this book we call that
phased approach a simple EDM.

Figure 10 on page 27 shows an example of a simple EDM that consists of
subject areas and the relationships among them. We suggest drawing a simple
EDM diagram for each subject you select for your data warehouse model.

For a simple EDM, make a list of subject areas, typically less than 25. Then,
draw a subject area model of the organization by defining the business
relationships among the subject areas.

When you have completed the subject area model, you will need to define the
contents of each subject area. For example, when you define customer, you
cannot simply say that customer is the person in an organization that has a
business relationship with your organization. For example, you must make it
clear whether the person includes a prospect or ex-customer. When referring to
the organization, be clear as to whether it can be only a registered business,
and not simply a social or civic interest group.

If possible, draw an ER diagram for each subject area. Do not be too concerned
about the details, such as relationship name and cardinality. Just identify the
primary entities and the relationships among them.

26 Data Modeling Techniques for Data Warehousing

Figure 10. A Simple Enterprise Data Model

The objective of a simple EDM is to scope a specific area of interest and develop
a general understanding of it. It will be very helpful in the development of your
data warehouse model.

5.2.3 The Benefits of EDM
Compared to an application or departmental model, an EDM has these benefits:

• Provides a single development base for applications and promotes the
integration of existing applications

• Supports the sharing of data among different areas of the business
• Provides a single set of consistent data definitions

The benefits of the EDM are being challenged today because a number of
organizations have attempted to create them and have been largely
unsuccessful. The following are some of the reasons for this lack of success:

• The scope of EDM tends to cover the entire enterprise. Therefore, the size
of the project tended to be so big that it seldom delivered the proper results
in a reasonable period of time.

• To deliver the value of EDM to the business, all areas of the organization
must be involved concurrently, which is an unrealistic expectation.

• The people required in an EDM project must have both a broad
understanding of the business and a detailed knowledge of a specific
business area. It is difficult to find such people, but even if you can, it is
more difficult to get them assigned to the modeling task rather than
performing their standard business duties.

Chapter 5. Architecting the Data 27

The above reasons are certainly cause for concern, but we consider them
challenges rather than reasons to avoid pursuit of an EDM. It is still a valuable
item to have and can be very helpful in creating the data warehouse model. To
help ease the effort of creating an EDM, many industry-specific template data
models are available to use as a starting point. For example, there is the
Financial Services Data Model (FSDM) for the finance industry available from
IBM. Through customizing the templates, you can reduce the modeling period
and required resources while at the same time experience the stable benefits of
an EDM.

If an organization has no EDM and no plans to create one, you can still receive
many of the benefits by creating a simple EDM. Whether the scope of the data
warehouse is for the entire enterprise or for a specific business area, a simple
EDM adds value. If you already have several data models for specific
applications, you can make use of them in creating the simple EDM. For
example, you can extract common components from application data models
and integrate them into the simple EDM. Integration is always a virtue in data
warehousing.

5.3 Data Granularity Model
In the physical design phase for data modeling, one of the most important
aspects of the design is related to the granularity of the data. In this section we
describe what we mean by granularity in the context of a data warehouse and
explain how to structure data to minimize or eliminate any loss of information
from using this valuable construct.

5.3.1 Granularity of Data in the Data Warehouse
Granularity of data in the data warehouse is concerned with the level of
summarization of the data elements. It refers then, actually, to the level of detail
available in the data elements. The more detail data that is available, the lower
the level of granularity. Conversely, the lower the level of detail, the higher the
level of granularity (or level of summarization of the data elements).

Granularity is important in data warehouse modeling because it offers the
opportunity for trade-off between important issues in data warehousing. For
example, one trade-off could be performance versus volume of data (and the
related cost of storing that data). Another example might be a trade-off between
the ability to access data at a very detailed level versus performance and the
cost of storing and accessing large volumes of data. Selecting the appropriate
level of granularity significantly affects the volume of data in the data warehouse.
Along with that, selecting the appropriate level of granularity determines the
capability of the data warehouse to enable answers to different types of queries.
To help make this clear, refer to the example shown in Figure 11 on page 29.
Here we are looking at transaction data for a bank account. On the left side of
the figure, let′s say that 50 is the average number of transaction per account and
the size of the record for a transaction is 150 bytes. As the result, it would
require about 7.5 KB to keep the very detailed transaction records to the end of
the month. On the right side of the figure, a less detailed set of data (with a
higher level of granularity) is shown in the form of summary by account per
month. Here, all the transactions for an account are summarized in only one
record. The summary record would require longer record size, perhaps 200
bytes instead of the 150 bytes of the raw transaction, but the result is a
significant savings in storage space.

28 Data Modeling Techniques for Data Warehousing

Figure 11. Granularity of Data:. The Level of Detail Trade-off

In terms of disk space and volume of data, a higher granularity provides a more
efficient way of storing data than a lower granularity. You would also have to
consider the disk space for the index of the data as well. This makes the space
savings even greater. Perhaps a greater concern is with the manipulation of
large volumes of data. This can impact performance at the cost of more
processing power.

There are always trade-offs to be made in data processing, and this is no
exception. For example, as the granularity becomes higher, the ability to answer
different types of queries (that require data at a more detailed level) diminishes.
If you have very low level of granularity, you can support any queries using that
data at the cost of increased storage space and diminished performance.

Let′s look again at the example in Figure 11. With a low level of granularity you
could answer the query, ″How many credit transactions were there for John′s
demand deposit account in the San Jose branch last week?″ With the higher
level of granularity, you cannot answer that question because the data is
summarized by month rather than by week.

If the granularity does not impact the ability to answer a specific query, the
amount of system resources required for that same query could still differ
considerably. Suppose that you have two tables with different levels of
granularity, such as transaction details and monthly account summary. To
answer a query about the monthly report for channel utilization by accounts, you
could use either of those two tables without any dependency on the level of
granularity. However, using the detailed transaction table requires a
significantly higher volume of disk activity to scan all the data as well as
additional processing power for calculation of the results. Using the monthly
account summary table would require much less resource.

In deciding on the level of granularity, you must always consider the trade-off
between the cost of the volume of data and the ability to answer queries.

Chapter 5. Architecting the Data 29

5.3.2 Multigranularity Modeling in the Corporate Environment
In organizations that have large volumes of data, multiple levels of granularity
could be considered to overcome the trade-offs. For example, we could divide
the data in a data warehouse into detailed raw data and summarized data.

Detailed raw data is the lowest level of detailed transaction data without any
aggregation and summarization. At this level, the data volume could be
extremely large. It may actually have to be on a separate storage medium such
as magnetic tape or an optical disk device when it is not being used. The data
could be loaded to disk for easy and faster access only during those times when
it is required.

Summarized data is transaction data aggregated at the level required for the
most typically used queries. In the banking example used previously, this might
be at the level of customer accounts. A much lower volume of data is required
for the summarized data source as compared to the detailed raw data. Of
course, there is a limit to the number of queries and level of detail that can be
extracted from the summarized data.

By creating two levels of granularity in a data warehouse, you can overcome the
trade-off between volume of data and query capability. The summarized level of
data supports almost all queries with the reduced amount of resources, and the
detailed raw data supports the limited number of queries requiring a detailed
level of data.

What we mean by summarized may still not be clear. The issue here is about
what the criteria will be for determining the level of summarization that should
be used in various situations. The answer requires a certain amount of intuition
and experience in the business. For example, if you summarize the data at a
very low level of detail, there will be few differences from the detailed raw data.
If you summarize the data at too high a level of detail, many queries must be
satisfied by using the detailed raw data. Therefore, in the beginning, simply
using intuition may be the rule. Then, over time, analytical iterative processes
can be refined to enhance or verify the intuition. Collecting statistics on the
usage of the various sources of data will provide input for the processes.

By structuring the data into multiple levels of summarized data, you can extend
the analysis of dual levels of granularity into multiple levels of granularity based
on the business requirements and the capacity of the data warehouse of each
organization. You will find more detail and examples of techniques for
implementing multigranularity modeling in Chapter 8, “Data Warehouse
Modeling Techniques” on page 81.

5.4 Logical Data Partitioning Model
To better understand, maintain, and navigate the data warehouse, we can define
both logical and physical partitions. Physical partitioning can be designed
according to the physical implementation requirements and constraints. In data
warehouse modeling, logical data partitioning is very important because it
affects physical partitioning not only for overall structure but also detailed table
partitioning. In this section we describe why and how the data is partitioned.

The subject area is the most common criterion for determining overall logical
data partitioning. We can define a subject area as a portion of a data warehouse
that is classified by a specific consistent perspective. The perspective is usually

30 Data Modeling Techniques for Data Warehousing

based on the characteristics of the data, such as customer, product, or account.
Sometimes, however, other criteria such as time period, geography, and
organizational unit become the measure for partitioning.

5.4.1 Partitioning the Data
The term partit ion was originally concerned with the physical status of a data
structure that has been divided into two or more separate structures. However,
sometimes logical partitioning of the data is required to better understand and
use the data. In that case, the descriptions of logical partitioning overlap with
physical partitioning.

5.4.1.1 The Goals of Partitioning
Partitioning the data in the data warehouse enables the accomplishment of
several critical goals. For example, it can:

• Provide flexible access to data
• Provide easy and efficient data management services
• Ensure scalability of the data warehouse
• Enable elements of the data warehouse to be portable. That is, certain

elements of the data warehouse can be shared with other physical
warehouses or archived on other storage media.

We usually partition large volumes of current detail data by splitting it into
smaller pieces. Doing that helps make the data easier to:

• Restructure
• Index
• Sequentially scan
• Reorganize
• Recover
• Monitor

5.4.1.2 The Criteria of Partitioning
For the question of how to partition the data in a data warehouse, there are a
number of important criteria to consider. As examples, the data can be
partitioned according to several of the following criteria:

• Time period (date, month, or quarter)

• Geography (location)

• Product (more generically, by line of business)

• Organizational unit

• A combination of the above

The choice of criteria is based on the business requirements and physical
database constraints. Nevertheless, time period must always be considered
when you decide to partition data.

Every database management system (DBMS) has its own specific way of
implementing physical partitioning, and they all can be quite different. And, a
very important consideration when selecting the DBMS on which the data
resides is support for partition indexing. Instead of DBMS or system level of
partitioning, you can consider partitioning by application. This would provide
flexibility in defining data over time, and portability in moving to the other data
warehouses. Notice that the issue of partitioning is closely related to

Chapter 5. Architecting the Data 31

multidimensional modeling, data granularity modeling, and the capabilities of a
particular DBMS to support data warehousing.

5.4.2 Subject Area
When you consider the partitioning of the data in a data warehouse, the most
common criterion is subject area. As you will remember, a data warehouse is
subject oriented; that is, it is oriented to specific selected subject areas in the
organization such as customer and product. This is quite different from
partitioning in the operational environment.

In the operational environment, partitioning is more typically by application or
function because the operational environment has been built around
transaction-oriented applications that perform a specific set of functions. And,
typically, the objective is to perform those functions as quickly as possible. If
there are queries performed in the operational environment, they are more
tactical in nature and are to answer a question concerned with that instant in
time. An example might be, ″Is the check for Mr. Smith payable or not?″
Queries in the data warehouse environment are more strategic in nature and are
to answer questions concerned with a larger scope. An example might be ″What
products are selling well?″ or ″Where are my weakest sales offices?″ To answer
those questions, the data warehouse should be structured and oriented to
subject areas such as product or organization. As such, subject areas are the
most common unit of logical partitioning in the data warehouse.

Subject areas are roughly classified by the topics of interest to the business. To
extract a candidate list of potential subject areas, you should first consider what
your business interests are. Examples are customers, profit, sales,
organizations, and products. To help in determining the subject areas, you could
use a technique that has been successful for many organizations, namely, the
5W1H rule; that is, the when, where, who, what, why, and how of your business
interests. For example, for answering the who question, your business interests
might be in customer, employee, manager, supplier, business partner, and
competitor.

After you extract a list of candidate subject areas, you decompose, rearrange,
select, and redefine them more clearly. As a result, you can get a list of subject
areas that best represent your organization. We suggest that you make a
hierarchy or grouping with them to provide a clear definition of what they are
and how they relate to each other. As a practical example of subject areas,
consider the following list taken from the FSDM:

• Arrangement
• Business direction item
• Classification
• Condition
• Event
• Involved party
• Location
• Product
• Resource item

The above list of nine subject areas can be decomposed into several other
subject areas. For example, arrangement consists of several subject areas such
as customer arrangement, facility arrangement, and security arrangement.

32 Data Modeling Techniques for Data Warehousing

Once you have a list of subject areas, you have to define the business
relationships among them. The relationships are good starting points for
determining the dimensions that might be used in a dimensional data warehouse
model because a subject area is a perspective of the business about which you
are interested.

In data warehouse modeling, subject areas help define the following criteria:

• Unit of the data model
• Unit of an implementation project
• Unit of management of the data
• Basis for the integration of multiple implementations

Assuming that the main role of subject area is the determination of the unit for
effective analysis, modeling, and implementation of the data warehouse, then the
other criteria such as business function, process, specific applications, or
organizational unit can be the measure for the subject area.

In dimensional modeling, the best unit of analysis is the business process area
in which the organization has the most interest. For a practical implementation
of a data warehouse, it is suggested that the unit of measure be the business
process area.

Chapter 5. Architecting the Data 33

34 Data Modeling Techniques for Data Warehousing

Chapter 6. Data Modeling for a Data Warehouse

This chapter provides you with a basic understanding of data modeling,
specifically for the purpose of implementing a data warehouse.

Data warehousing has become generally accepted as the best approach for
providing an integrated, consistent source of data for use in data analysis and
business decision making. However, data warehousing can present complex
issues and require significant time and resources to implement. This is
especially true when implementing on a corporatewide basis. To receive
benefits faster, the implementation approach of choice has become bottom up
with data marts. Implementing in these small increments of small scope
provides a larger return-on-investment in a short amount of time. Implementing
data marts does not preclude the implementation of a global data warehouse. It
has been shown that data marts can scale up or be integrated to provide a
global data warehouse solution for an organization. Whether you approach data
warehousing from a global perspective or begin by implementing data marts, the
benefits from data warehousing are significant.

The question then becomes, How should the data warehouse databases be
designed to best support the needs of the data warehouse users? Answering
that question is the task of the data modeler. Data modeling is, by necessity,
part of every data processing task, and data warehousing is no exception. As
we discuss this topic, unless otherwise specified, the term data warehouse also
implies data mart.

We consider two basic data modeling techniques in this book: ER modeling and
dimensional modeling. In the operational environment, the ER modeling
technique has been the technique of choice. With the advent of data
warehousing, the requirement has emerged for a technique that supports a data
analysis environment. Although ER models can be used to support a data
warehouse environment, there is now an increased interest in dimensional
modeling for that task.

In this chapter, we review why data modeling is important for data warehousing.
Then we describe the basic concepts and characteristics of ER modeling and
dimensional modeling.

6.1 Why Data Modeling Is Important
Visualization of the business world: Generally speaking, a model is an
abstraction and reflection of the real world. Modeling gives us the ability to
visualize what we cannot yet realize. It is the same with data modeling.

Traditionally, data modelers have made use of the ER diagram, developed as
part of the data modeling process, as a communication media with the business
end users. The ER diagram is a tool that can help in the analysis of business
requirements and in the design of the resulting data structure. Dimensional
modeling gives us an improved capability to visualize the very abstract
questions that the business end users are required to answer. Utilizing
dimensional modeling, end users can easily understand and navigate the data
structure and fully exploit the data.

 Copyright IBM Corp. 1998 35

Actually, data is simply a record of all business activities, resources, and results
of the organization. The data model is a well-organized abstraction of that data.
So, it is quite natural that the data model has become the best method to
understand and manage the business of the organization. Without a data model,
it would be very difficult to organize the structure and contents of the data in the
data warehouse.

The essence of the data warehouse architecture: In addition to the benefit of
visualization, the data model plays the role of a guideline, or plan, to implement
the data warehouse. Traditionally, ER modeling has primarily focused on
eliminating data redundancy and keeping consistency among the different data
sources and applications. Consolidating the data models of each business area
before the real implementation can help assure that the result will be an
effective data warehouse and can help reduce the cost of implementation.

Different approaches of data modeling: ER and dimensional modeling, although
related, are very different from each other. There is much debate as to which
method is best and the conditions under which a particular technique should be
selected. There can be no definite answer on which is best, but there are
guidelines on which would be the better selection in a particular set of
circumstances or in a particular environment. In the following sections, we
review and define the modeling techniques and provide some selection
guidelines.

6.2 Data Modeling Techniques
Two data modeling techniques that are relevant in a data warehousing
environment are ER modeling and dimensional modeling.

ER modeling produces a data model of the specific area of interest, using two
basic concepts: entities and the relationships between those entities. Detailed
ER models also contain attributes, which can be properties of either the entities
or the relationships. The ER model is an abstraction tool because it can be used
to understand and simplify the ambiguous data relationships in the business
world and complex systems environments.

Dimensional modeling uses three basic concepts: measures, facts, and
dimensions. Dimensional modeling is powerful in representing the requirements
of the business user in the context of database tables.

Both ER and dimensional modeling can be used to create an abstract model of a
specific subject. However, each has its own limited set of modeling concepts
and associated notation conventions. Consequently, the techniques look
different, and they are indeed different in terms of semantic representation. The
following sections describe the modeling concepts and notation conventions for
both ER modeling and dimensional modeling that will be used throughout this
book.

36 Data Modeling Techniques for Data Warehousing

6.3 ER Modeling
A prerequisite for reading this book is a basic knowledge of ER modeling.
Therefore we do not focus on that traditional technique. We simply define the
necessary terms to form some consensus and present notation conventions used
in the rest of this book.

6.3.1 Basic Concepts
An ER model is represented by an ER diagram, which uses three basic graphic
symbols to conceptualize the data: entity, relationship, and attribute.

6.3.1.1 Entity
An entity is defined to be a person, place, thing, or event of interest to the
business or the organization. An entity represents a class of objects, which are
things in the real world that can be observed and classified by their properties
and characteristics. In some books on IE, the term entity type is used to
represent classes of objects and entity for an instance of an entity type. In this
book, we will use them interchangeably.

Even though it can differ across the modeling phases, usually an entity has its
own business definition and a clear boundary definition that is required to
describe what is included and what is not. In a practical modeling project, the
project members share a definition template for integration and a consistent
entity definition in a model. In high-level business modeling an entity can be
very generic, but an entity must be quite specific in the detailed logical
modeling.

Figure 12 on page 38 shows an example of entities in an ER diagram. A
rectangle represents an entity and, in this book, the entity name is notated by
capital letters. In Figure 12 on page 38 there are four entities: PRODUCT,
PRODUCT MODEL, PRODUCT COMPONENT, and COMPONENT. The four
diagonal lines on the corners of the PRODUCT COMPONENT entity represent the
notation for an associative entity. An associative entity is usually to resolve the
many-to-many relationship between two entities. PRODUCT MODEL and
COMPONENT are independent of each other but have a business relationship
between them. A product model consists of many components and a component
is related to many product models. With just this business rule, we cannot tell
which components make up a product model. To do that you can define a
resolving entity. For example, consider PRODUCT COMPONENT in Figure 12 on
page 38. The PRODUCT COMPONENT entity can provide the information about
which components are related to which product model.

In ER modeling, naming entities is important for an easy and clear understanding
and communications. Usually, the entity name is expressed grammatically in the
form of a noun rather than a verb. The criteria for selecting an entity name is
how well the name represents the characteristics and scope of the entity.

In the detailed ER model, defining a unique identifier of an entity is the most
critical task. These unique identifiers are called candidate keys. From them we
can select the key that is most commonly used to identify the entity. It is called
the primary key.

Chapter 6. Data Modeling for a Data Warehouse 37

Figure 12. A Sample ER Model. Entity, relationship, and attributes in an ER diagram.

6.3.1.2 Relationship
A relationship is represented with lines drawn between entities. It depicts the
structural interaction and association among the entities in a model. A
relationship is designated grammatically by a verb, such as owns, belongs, and
has. The relationship between two entities can be defined in terms of the
cardinality. This is the maximum number of instances of one entity that are
related to a single instance in another table and vice versa. The possible
cardinalities are: one-to-one (1:1), one-to-many (1:M), and many-to-many (M:M).
In a detailed (normalized) ER model, any M:M relationship is not shown because
it is resolved to an associative entity.

Figure 12 shows examples of relationships. A high-level ER diagram has
relationship names, but in a detailed ER diagram, the developers usually do not
define the relationship name. In Figure 12, the line between COMPONENT and
PRODUCT COMPONENT is a relationship. The notation (cross lines and short
lines) on the relationship represents the cardinality.

When a relationship of an entity is related to itself, we can say that the
relationship is recursive. Recursive relationships are usually developed either
into associative entities or an attribute that references the other instance of the
same entity.

When the cardinality of an entity is one-to-many, very often the relationship
represents the dependent relationship of an entity to the other entity. In that
case, the primary key of the parent entity is inherited into the dependent entity
as some part of the primary key.

6.3.1.3 Attributes
Attributes describe the characteristics of properties of the entities. In Figure 12,
Product ID, Description, and Picture are attributes of the PRODUCT entity. For
clarification, attribute naming conventions are very important. An attribute name
should be unique in an entity and should be self-explanatory. For example,
simply saying date1 or date2 is not allowed, we must clearly define each. As
examples, they could be defined as the order date and delivery date.

38 Data Modeling Techniques for Data Warehousing

When an instance has no value for an attribute, the minimum cardinality of the
attribute is zero, which means either nullable or optional. In Figure 12, you can
see the characters P, m, o, and F. They stand for primary key, mandatory,
optional, and foreign key. The Picture attribute of the PRODUCT entity is
optional, which means it is nullable. A foreign key of an entity is defined to be
the primary key of another entity. The Product ID attribute of the PRODUCT
MODEL entity is a foreign key because it is the primary key of the PRODUCT
entity. Foreign keys are useful to determine relationships such as the referential
integrity between entities.

In ER modeling, if the maximum cardinality of an attribute is more than 1, the
modeler will try to normalize the entity and finally elevate the attribute to
another entity. Therefore, normally the maximum cardinality of an attribute is 1.

6.3.1.4 Other Concepts
A concept that seems frustrating to users is domain. However, it is actually a
very simple concept. A domain consists of all the possible acceptable values
and categories that are allowed for an attribute. Simply, a domain is just the
whole set of the real possible occurrences. The format or data type, such as
integer, date, and character, provides a clear definition of domain. For the
enumerative type of domain, the possible instances should be defined. The
practical benefits of domain is that it is imperative for building the data
dictionary or repository, and consequently for implementing the database. For
example, suppose that we have a new attribute called product type in the
PRODUCT entity and the number of product types is fixed and with a value of
CellPhone and Pager. The product types attribute forms an enumerative domain
with instances of CellPhone and Pager, and this information should be included
in the data dictionary. The attribute first shop date of the PRODUCT MODEL
entity can be any date within specific conditions. For this kind of restrictive
domain, the instances cannot be fixed, and the range or conditions should be
included in the data dictionary.

Another important concept in ER modeling is normalization. Normalization is a
process for assigning attributes to entities in a way that reduces data
redundancy, avoids data anomalies, provides a solid architecture for updating
data, and reinforces the long-term integrity of the data model. The third normal
form is usually adequate. A process for resolving the many-to-many
relationships is an example of normalization.

6.3.2 Advanced Topics in ER Modeling
In addition to the basic ER modeling concepts, three others are important for this
book:

• Supertype and subtype
• Constraint statement
• Derivation

6.3.2.1 Supertype and Subtype
Entities can have subtypes and supertypes. The relationship between a
supertype entity and its subtype entity is an Isa relationship. An Isa relationship
is used where one entity is a generalization of several more specialized entities.
Figure 13 on page 41 shows an example of supertype and subtype. In the
figure, SALES OUTLET is the supertype of RETAIL STORE and CORPORATE
SALES OFFICE. And, RETAIL STORE and CORPORATE SALES OFFICE are
subtypes of SALES OUTLET. The notation of supertype and subtype is

Chapter 6. Data Modeling for a Data Warehouse 39

represented by a triangle on the relationship. This notation is used by the IBM
DataAtlas product.

Each subtype entity inherits attributes from its supertype entity. In addition to
that, each subtype entity has its own distinctive attributes. In the example,
subentities have Region ID and Outlet ID as inherited attributes. And, the
subentities have their own attributes such as number of cash registers and floor
space of the RETAIL STORE subentity.

The practical benefits of supertyping and subtyping are that it makes a data
model more directly expressive. In Figure 13 on page 41, by just looking at the
ER diagram we can understand that sales outlets are composed of retail stores
and corporate sales offices.

The other benefits of supertyping and subtyping are that it makes a data model
more ready to support flexible database developments. To transform supertype
and subtype entities into tables, we can think of several implementation choices.
We can make only one table within which an attribute is the indicator and many
attributes are nullable. Otherwise, we can have only subtype tables to which all
attributes of supertype are inherited. Another choice is to make tables for each
entity. Each choice has its considerations. Through supertyping and subtyping,
a very flexible data model can be implemented. Subtyping also makes the
relationship clear. For example, suppose that we have a SALESPERSON entity
and only corporate sales offices can officially have a salesperson. Without
subtyping of SALES OUTLET into CORPORATE SALES OFFICE and RETAIL
STORE, there is no way to express the constraints explicitly using ER notations.

Sometimes inappropriate use of supertyping and/or subtyping in ER modeling
can cause problems. For example, a person can be a salesperson for the
CelDial company as well as a customer. We might define person as being a
supertype of employee and customer. But, in the practical world, it is not true.
If we want a very generic model, we would better design a contract or
association entity between person and company, or just leave it as customer and
salesperson entities.

6.3.2.2 Constraints
Some constraints can be represented by relationships in the model. Basic
referential integrity rules can be identified by relationships and their
cardinalities. However, the more specific constraints such as ″Only when the
occurrences of the parent entity ACCOUNT are checking accounts, can the
occurrence of the child entity CHECK ACCOUNT DETAILS exist″ are not
represented on an ER diagram. Such constraints can be added explicitly in the
model by adding a constraint statement. This is particularly useful when we will
have to show the temporal constraints, which also cannot be captured by
relationship. For example, some occurrences of an entity have to be deleted
when an occurrence of the other related entity is updated to a specific status.
To define the life cycle of an entity, we need a constraint statement. Showing
these types of specific conditions on an ER diagram is difficult.

If you define the basics of a language for expressing constraint statements, it will
be very useful for communications among developers. For example, you could
make a template for constraint statement with these titles:

• Constraint name and type
• Related objects (entity, relationship, attribute)
• Definition and descriptions

40 Data Modeling Techniques for Data Warehousing

Figure 13. Supertype and Subtype

• Examples of the whole fixed number of instances

6.3.2.3 Derived Attributes and Derivation Functions
Derived attributes are less common in ER modeling for traditional OLTP
applications, because they usually avoid having derived attributes at all. Data
warehouse models, however, tend to include more derived attributes explicitly in
the model. You can define a way to represent the derivation formula in the form
of a statement. Through this form, you identify that an attribute is derived as
well as providing explicitly the derivation function that is associated with the
attribute.

As a matter of fact, all summarized attributes in the data warehouse are derived,
because the data warehouse collects and consolidates data from source
databases. As a consequence, the metadata should contain all of these
derivation policies explicitly and users should have access to it.

For example, you can write a detailed derivation statement as follows:

• Entity and attribute name - SALES.Sales Volume.
• Derivation source - Sales Operational Database for each region. Related

tables - SALES HISTORY,
• Derivation function - summarization of the gross sales of all sales outlets

(formula: sales volume - returned volume - loss volume). Returned volume
is counted only for the month.

• Derivation frequency - weekly (after closing of operational journaling on
Saturday night)

• Others

Of course, you must not clutter up your ER model by explicitly presenting the
derivation functions for all attributes. You need some compromise. Perhaps you
can associate attributes derived from other attributes in the data warehouse with
a derivation function that is explicitly added to the model. In any case,
presenting the derivation functions is restricted to only where it helps to
understand the model.

Chapter 6. Data Modeling for a Data Warehouse 41

6.4 Dimensional Modeling
In some respects, dimensional modeling is simpler, more expressive, and easier
to understand than ER modeling. But, dimensional modeling is a relatively new
concept and not firmly defined yet in details, especially when compared to ER
modeling techniques.

This section presents the terminology that we use in this book as we discuss
dimensional modeling. For more detailed techniques, methodologies, and hints,
refer to Chapter 8, “Data Warehouse Modeling Techniques” on page 81.

6.4.1 Basic Concepts
Dimensional modeling is a technique for conceptualizing and visualizing data
models as a set of measures that are described by common aspects of the
business. It is especially useful for summarizing and rearranging the data and
presenting views of the data to support data analysis. Dimensional modeling
focuses on numeric data, such as values, counts, weights, balances, and
occurrences.

Dimensional modeling has several basic concepts:

• Facts
• Dimensions
• Measures (variables)

6.4.1.1 Fact
A fact is a collection of related data items, consisting of measures and context
data. Each fact typically represents a business item, a business transaction, or
an event that can be used in analyzing the business or business processes.

In a data warehouse, facts are implemented in the core tables in which all of the
numeric data is stored.

6.4.1.2 Dimension
A dimension is a collection of members or units of the same type of views. In a
diagram, a dimension is usually represented by an axis. In a dimensional
model, every data point in the fact table is associated with one and only one
member from each of the multiple dimensions. That is, dimensions determine
the contextual background for the facts. Many analytical processes are used to
quantify the impact of dimensions on the facts.

Dimensions are the parameters over which we want to perform Online Analytical
Processing (OLAP). For example, in a database for analyzing all sales of
products, common dimensions could be:

• Time
• Location/region
• Customers
• Salesperson
• Scenarios such as actual, budgeted, or estimated numbers

Dimensions can usually be mapped to nonnumeric, informative entities such as
branch or employee.

42 Data Modeling Techniques for Data Warehousing

Dimension Members: A dimension contains many dimension members. A
dimension member is a distinct name or identifier used to determine a data
item ′s position. For example, all months, quarters, and years make up a time
dimension, and all cities, regions, and countries make up a geography
dimension.

Dimension Hierarchies: We can arrange the members of a dimension into one
or more hierarchies. Each hierarchy can also have multiple hierarchy levels.
Every member of a dimension does not locate on one hierarchy structure.

A good example to consider is the time dimension hierarchy as shown in
Figure 14. The reason we define two hierarchies for time dimension is because
a week can span two months, quarters, and higher levels. Therefore, weeks
cannot be added up to equal a month, and so forth. If there is no practical
benefit in analyzing the data on a weekly basis, you would not need to define
another hierarchy for week.

Figure 14. Multiple Hierarchies in a Time Dimension

6.4.1.3 Measure
A measure is a numeric attribute of a fact, representing the performance or
behavior of the business relative to the dimensions. The actual numbers are
called as variables. For example, measures are the sales in money, the sales
volume, the quantity supplied, the supply cost, the transaction amount, and so
forth. A measure is determined by combinations of the members of the
dimensions and is located on facts.

6.4.2 Visualization of a Dimensional Model
The most popular way of visualizing a dimensional model is to draw a cube. We
can represent a three-dimensional model using a cube. Usually a dimensional
model consists of more than three dimensions and is referred to as a hypercube.
However, a hypercube is difficult to visualize, so a cube is the more commonly
used term.

In Figure 15 on page 44, the measurement is the volume of production, which is
determined by the combination of three dimensions: location, product, and time.
The location dimension and product dimension have their own two levels of
hierarchy. For example, the location dimension has the region level and plant

Chapter 6. Data Modeling for a Data Warehouse 43

level. In each dimension, there are members such as the east region and west
region of the location dimension. Although not shown in the figure, the time
dimension has its numbers, such as 1996 and 1997. Each subcube has its own
numbers, which represent the volume of production as a measurement. For
example, in a specific time period (not expressed in the figure), the Armonk plant
in East region has produced 11,000 CellPhones, of model number 1001.

Figure 15. The Cube: A Metaphor for a Dimensional Model

6.4.3 Basic Operations for OLAP
Dimensional modeling is primarily to support OLAP and decision making. Let ′s
review some of the basic concepts of OLAP to get a little better grasp of OLAP
business requirements so that we can model the data warehouse more
effectively.

Four types of operations are used in OLAP to analyze data. As we consider
granularity, we can perform the operations of drill down and roll up. To browse
along the dimensions, we use the operations slice and dice. Let′s explore what
those terms really mean.

6.4.3.1 Drill Down and Roll Up
Drill down and roll up are the operations for moving the view down and up along
the dimensional hierarchy levels. With drill-down capability, users can navigate
to higher levels of detail. With roll-up capability, users can zoom out to see a
summarized level of data. The navigation path is determined by the hierarchies
within dimensions. As an example, look at Figure 16 on page 45. While you
analyze the monthly production report of the west region plants, you might like
to review the recent trends by looking at past performance by quarter. You
would be performing a roll-up operation by looking at the quarterly data. You
may then wonder why the San Jose plant produced less than Boulder and would
need more detailed information. You could then use the drill down-operation on
the report by Team within a Plant to understand how the productivity of Team 2
(which is lower in all cases than the productivity for Team 1) can be improved.

44 Data Modeling Techniques for Data Warehousing

Figure 16. Example of Dri l l Down and Rol l Up

6.4.3.2 Slice and Dice
Slice and dice are the operations for browsing the data through the visualized
cube. Slicing cuts through the cube so that users can focus on some specific
perspectives. Dicing rotates the cube to another perspective so that users can
be more specific with the data analysis. Let′s look at another example, using
Figure 17 on page 46. You may be analyzing the production report of a specific
month by plant and product, so you get the quarterly view of gross production by
plant. You can then change the dimension from product to time, which is dicing.
Now, you want to focus on the CellPhone only, rather than gross production. To
do this, you can cut off the cube only for the CellPhone for the same dimensions,
which is slicing.

Those are some of the key operations used in data analysis. To enable those
types of operations requires that the data be stored in a specific way, and that is
in a dimensional model.

6.4.4 Star and Snowflake Models
There are two basic models that can be used in dimensional modeling:

• Star model
• Snowflake model

Sometimes, the constellation model or multistar model is introduced as an
extension of star and snowflake, but we will confine our discussion to the two
basic structures. That is sufficient to explain the issues in dimensional
modeling. This section presents only a basic introduction to the dimensional
modeling techniques. For a detailed description, refer to Chapter 8, “Data
Warehouse Modeling Techniques” on page 81.

Chapter 6. Data Modeling for a Data Warehouse 45

Figure 17. Example of Slice and Dice

6.4.4.1 Star Model
Star schema has become a common term used to connote a dimensional model.
Database designers have long used the term star schema to describe
dimensional models because the resulting structure looks like a star and the
logical diagram looks like the physical schema. Business users feel
uncomfortable with the term schema, so they have embraced the more simple
sounding term of star model. In this book, we will also use the term star model.

The star model is the basic structure for a dimensional model. It typically has
one large central table (called the fact table) and a set of smaller tables (called
the dimension tables) arranged in a radial pattern around the fact table.
Figure 18 on page 47 shows an example of a star schema. It depicts sales as a
fact table in the center. Arranged around the fact table are the dimension tables
of time, customer, seller, manufacturing location, and product.

Whereas the traditional ER model has an even and balanced style of entities and
complex relationships among entities, the dimensional model is very
asymmetric. Even though the fact table in the dimensional model is joined with
all the other dimension tables, there is only a single join line connecting the fact
table to the dimension tables.

6.4.4.2 Snowflake Model
Dimensional modeling typically begins by identifying facts and dimensions, after
the business requirements have been gathered. The initial dimensional model is
usually starlike in appearance, with one fact in the center and one level of
several dimensions around it.

The snowflake model is the result of decomposing one or more of the
dimensions, which sometimes have hierarchies themselves. We can define the
many-to-one relationships among members within a dimension table as a

46 Data Modeling Techniques for Data Warehousing

Figure 18. Star Model.

separate dimension table, forming a hierarchy. For example, the seller
dimension in Figure 18 on page 47 is decomposed into subdimensions outlet,
region, and outlet type in Figure 19 on page 48. This type of model is derived
from the star schema and, as can be seen, looks like a snowflake.

The decomposed snowflake structure visualizes the hierarchical structure of
dimensions very well. The snowflake model is easy for data modelers to
understand and for database designers to use for the analysis of dimensions.
However, the snowflake structure seems more complex and could tend to make
the business users feel more uncomfortable working with it than with the simpler
star model. Developers can also elect the snowflake because it typically saves
data storage. Consider a banking application where there is a very large
account table for one of the dimensions. You can easily expect to save quite a
bit of space in a table of that size by not storing the very frequently repeated text
fields, but rather putting them once in a subdimension table. Although the
snowflake model does save space, it is generally not significant when compared
to the fact table. Most database designers do not consider the savings in space
to be a major decision criterion in the selection of a modeling technique.

6.4.5 Data Consolidation
Another major criterion for the use of OLAP is the fast response time for ad hoc
queries. However, there could still be performance issues depending on the
structure and volume of data. For a consistently fast response time, data
consolidation (precalculation or preaggregation) is required. By precalculating
and storing all subtotals before the query is issued, you can reduce the number
of records to be retrieved for the query and maintain consistent and fast
performance. The trade-off is that you will have to know how the users typically
make their queries to understand how to consolidate. When users drill down to
details, they typically move along the levels of a dimension hierarchy.
Therefore, that provides the paths to consolidate or precalculate the data.

6.5 ER Modeling and Dimensional Modeling
The two techniques for data modeling in a data warehouse environment
sometimes look very different from each other, but they have many similarities.
Dimensional modeling can use the same notation, such as entity, relationship,
attribute, and primary key. And, in general, you can say that a fact is just an
entity in which the primary key is a combination of foreign keys, and the foreign

Chapter 6. Data Modeling for a Data Warehouse 47

Figure 19. Snowflake Model

keys reference the dimensions. Therefore, we could say that dimensional
modeling is a special form of ER modeling. An ER model provides the structure
and content definition of the informational needs of the corporation, which is the
base for designing the data warehouse.

This chapter defines the basic differences between the two primary data
modeling techniques used in data warehousing. A conclusion that can be drawn
from the discussion is that the two techniques have their own strengths and
weaknesses, and either can be used in the appropriate situation.

48 Data Modeling Techniques for Data Warehousing

Chapter 7. The Process of Data Warehousing

This chapter presents a basic methodology for developing a data warehouse.
The ideas presented generally apply equally to a data warehouse or a data mart.
Therefore, when we use the term data warehouse you can infer data mart. If
something applies only to one or the other, that will be explicitly stated. We
focus on the process of data modeling for the data warehouse and provide an
extended section on the subject but discuss it in the larger context of data
warehouse development.

The process of developing a data warehouse is similar in many respects to any
other development project. Therefore, the process follows a similar path. What
follows is a typical, and likely familiar, development cycle with emphasis on how
the different components of the cycle affect your data warehouse modeling
efforts. Figure 20 shows a typical data warehouse development cycle.

Figure 20. Data Warehouse Development Life Cycle

It is certainly true that there is no one correct or definitive life cycle for
developing a data warehouse. We have chosen one simply because it seems to
work well for us. Because our focus is really on modeling, the specific life cycle
is not an issue here. What is essential is that we identify what you need to know
to create an effective model for your data warehouse environment.

There are a number of considerations that must be taken into account as we
discuss the data warehouse development life cycle. We need not dwell on them,
but be aware of how they affect the development effort and understand how they
will affect the overall data warehouse design and model.

• The life cycle diagram in Figure 20 seems to infer a single instance of a data
warehouse. Clearly, this should be considered a logical view. That is, there
could be multiple physical instances of a data warehouse involved in the
environment. As an example, consider an implementation where there are
multiple data marts. In this case you would iterate through the tasks in the
life cycle for each data mart. This approach, however, brings with it an
additional consideration, namely, the integration of the data marts. This
integration can have an impact on the physical data, with considerations for

 Copyright IBM Corp. 1998 49

redundancy, inconsistency, and currency levels. Integration is also
especially important because it can require integration of the data models for
each of the data marts as well.

If dimensional modeling were being used, the integration might take place at
the dimension level. Perhaps there could be a more global model that
contains the dimensions for the organization. Then when data marts, or
multiple instances of a data warehouse, are implemented, the dimensions
used could be subsets of those in the global model. This would enable
easier integration and consistency in the implementation.

• Data marts can be dependent or independent. In the previous consideration
we addressed dependent data marts with their need for integration.
Independent data marts are basically smaller in scope data warehouses that
are stand-alone. In this case the data models can also be independent, but
you must understand that this type of implementation can result in data
redundancy, inconsistency, and currency levels.

The key message of the life cycle diagram is the iterative nature of data
warehouse development. This, more than anything else, distinguishes the life
cycle of a data warehouse project from other development projects. Whereas all
projects have some degree of iteration, data warehouse projects take iteration to
the extreme to enable fast delivery of portions of a warehouse. Thus portions of
a data warehouse can be delivered while others are still being developed. In
most cases, providing the user with some data warehouse function generates
immediate benefits. Delivery of a data warehouse is not typically an
all-or-nothing proposition.

Because the emphasis of this book is on modeling for the data warehouse, we
have left out discussion about infrastructure acquisition. Although this would
certainly be part of any typical data warehouse effort, it does not directly impact
the modeling process.

Within each step of the process a number of techniques are identified for
creating the model. As the focus here is on what to do more than how to do it,
very little detail is given for these techniques. A separate chapter (see
Chapter 8, “Data Warehouse Modeling Techniques” on page 81) is provided for
those requiring detailed knowledge of the techniques outlined here.

7.1 Manage the Project
On the left side of the diagram in Figure 20 on page 49, you see a line entitled
Manage the Project. As with any development project, there must be a
management component, and this component exists from the beginning to the
end of the project. The development of a data warehouse is no different in this
respect. However, it is a project management component and not a data
warehouse management component. The difference is that management of a
project is finite in scope and is concerned with the building of the data
warehouse, whereas management of a data warehouse is ongoing (just as
management of any other aspect of your organization, such as inventory or
facilities) and is concerned with the execution of the data warehousing
processes.

50 Data Modeling Techniques for Data Warehousing

7.2 Define the Project
In a typical project, high-level objectives are defined during the project definition
phase. As well, limits are set on what will be delivered. This is commonly
called the scope of the project.

In data warehouse development, although the project objectives need to be
specific, the data warehouse requirements are typically defined in general
statements. They should answer such questions as, ″What do I want to analyze,
and why do I want to analyze it?″ By answering the why question, we get an
understanding of the requirements that must be addressed and begin to gain
insight into the users′ information requirements.

Data warehouse requirements contrast with typical application requirements,
which will generally contain specific statements about which processes need to
be automated. It is important that the requirements for data warehouse
development not be too specific. If they are too specific, they may influence the
way the data warehouse is designed to the point of excluding factors that seem
irrelevant but may be key to the analysis being conducted.

One of the main reasons for defining the scope of a project is to prevent
constant change throughout the life cycle as new requirements arise. In data
warehousing, defining the scope requires special care. It is still true that you
want to prevent your target from constantly changing as new requirements arise.
However, two of the keys to a valuable data warehouse are its flexibility and its
ability to handle the as yet unknown query. Therefore, it is essential that the
scope be defined to recognize that the delivered data warehouse will likely be
somewhat broader than indicated by the initial requirements. You are walking a
tightrope between a scope that leads to an ever-changing target, incapable of
being pinned down and declared complete, and one so rigid that it cannot adjust
to the users′ ever-changing requirements.

7.3 Requirements Gathering
The traditional development cycle focuses on automating the process, making it
faster and more efficient. The data warehouse development cycle focuses on
facilitating the analysis that will change the process to make it more effective.
Efficiency measures how much effort is required to meet a goal. Effectiveness
measures how well a goal is being met against a set of expectations.

The requirements identified at this point in the development cycle are used to
build the data warehouse model. But, the requirements of an organization
change over time, and what is true one day is no longer valid the next. How
then, do you know when you have successfully identified the user′s
requirements? Although there is no definitive test, we propose that if your
requirements address the following questions, you probably have enough
information to begin modeling:

• Who (people, groups, organizations) is of interest to the user?
• What (functions) is the user trying to analyze?
• Why does the user need the data?
• When (for what point in time) does the data need to be recorded?
• Where (geographically, organizationally) do relevant processes occur?
• How do we measure the performance or state of the functions being

analyzed?

Chapter 7. The Process of Data Warehousing 51

There are many methods for deriving business requirements. In general, these
methods can be placed in one of two categories: source-driven requirements
gathering and user-driven requirements gathering (see Figure 21 on page 52).

Figure 21. Two Approaches. Source-Driven and User-Driven Requirements Gathering

7.3.1 Source-Driven Requirements Gathering
Source-driven requirements gathering, as the name implies, is a method based
on defining the requirements by using the source data in production operational
systems. This is done by analyzing an ER model of source data if one is
available or the actual physical record layouts and selecting data elements
deemed to be of interest.

The major advantage of this approach is that you know from the beginning that
you can supply all the data because you are already limiting yourself to what is
available. A second benefit is that you can minimize the time required by the
users in the early stages of the project.

Of course there are also disadvantages to this approach. By minimizing user
involvement, you increase the risk of producing an incorrect set of requirements.
Depending on the volume of source data you have, and the availability of ER
models for it, this can also be a very time-consuming approach. Perhaps most
important, some of the user ′s key requirements may need data that is currently
unavailable. Without the opportunity to identify such requirements, there is no
chance to investigate what is involved in obtaining external data. External data
is data that exists outside the organization. Even so, external data can often be
of significant value to the business users. Even though steps should be taken to
ensure the quality of such data, there is no reason to arbitrarily exclude it from
being used.

The result of the source-driven approach is to provide the user with what you
have. We believe there are at least two cases where this is appropriate. First,
relative to dimensional modeling, it can be used to drive out a fairly
comprehensive list of the major dimensions of interest to the organization. If
you ultimately plan to have an organizationwide data warehouse, this could
minimize the proliferation of duplicate dimensions across separately developed
data marts. Second, analyzing relationships in the source data can identify
areas on which to focus your data warehouse development efforts.

52 Data Modeling Techniques for Data Warehousing

7.3.2 User-Driven Requirements Gathering
User-driven requirements gathering is a method based on defining the
requirements by investigating the functions the users perform. This is usually
done through a series of meetings and/or interviews with users.

The major advantage to this approach is that the focus is on providing what is
needed, rather than what is available. In general, this approach has a smaller
scope than the source-driven approach. Therefore, it generally produces a
useful data warehouse in a shorter timespan.

On the negative side, expectations must be closely managed. The users must
clearly understand that it is possible that some of the data they need can simply
not be made available. This is important because you do not want to limit what
the user asks for. Outside-the-box thinking should be promoted when defining
requirements for a data warehouse. This will prevent you from eliminating
requirements simply because you think they might not be possible. If a user is
too tightly focused, it is possible to miss useful data that is available in the
production systems.

We believe user-driven requirements gathering is the approach of choice,
especially when developing data marts. For a full-scale data warehouse, we
believe it would be worthwhile to use the source-driven approach to break the
project into manageable pieces, which may be defined as subject areas. The
user-driven approach could then be used to gather the requirements for each
subject area.

7.3.3 The CelDial Case Study
Throughout this chapter, we reference a case study (see Appendix A, “The
CelDial Case Study” on page 163) to illustrate the steps in the process of
creating a data warehouse model. In that case study, we create a set of
corporatewide dimensions, using the source-driven requirements gathering
approach. We then take the user-driven requirements gathering approach to
define specific dimensional models. As each step in the process is presented,
some component of the model is created. It would be well worthwhile to review
that case study before continuing.

7.4 Modeling the Data Warehouse
Modeling the target warehouse data is the process of translating requirements
into a picture along with the supporting metadata that represents those
requirements. Although we separate the requirements and modeling
discussions for readability purposes, in reality these steps often overlap. As
soon as some initial requirements are documented, an initial model starts to
take shape. As the requirements become more complete, so too does the
model.

We must also point out that there is a distinction between completing the
modeling phase and completing the model. At the end of the modeling phase,
you have a complete picture of the requirements. However, only part of the
metadata will have been documented. A model cannot truly be considered
complete until the remainder of the metadata is identified and documented
during the design phase.

Chapter 7. The Process of Data Warehousing 53

For a discussion on selection of a modeling technique, refer to Chapter 8, “Data
Warehouse Modeling Techniques” on page 81. The remainder of this section
demonstrates the steps to follow in building a model of your data warehouse.

7.4.1 Creating an ER Model
We believe that ER modeling is generally well understood. In the circumstance
that the physical data warehouse implementation is different enough from the
dimensional model to warrant the creation of an ER model, standard ER
modeling techniques apply.

Defining the dimensions for your organization is a worthwhile exercise. Creation
of successive data marts will be easier if much of the dimension data already
exists.

Let′s use the case study ER model (see Figure 92 on page 168) as an example.
The first step is to remove all the entities that act as associative entities and all
subtype entities. In the case study this includes Product Component, Inventory,
Order Line, Order, Retail Store, and Corporate Sales Office. Be careful to create
all the many-to-many relationships that replace these entities (see Figure 22).

Figure 22. Corporate Dimensions: Step One. Removing subtypes and many-to-many
relationships from an ER model.

The next step is to roll up the entities at the end of each of the many-to-many
relationships into single entities. For each new entity, consider which attributes
in the original entities would be useful constraints on the new dimension.
Remember to consider attributes of any subtype entities removed in the first
step. As well, because the model is a logical representation, we remove the
individual keys and replace them with a generic key for each dimension (see
Figure 23 on page 55). Physical keys will be assigned during the design phase.

54 Data Modeling Techniques for Data Warehousing

In our case study example, note that rolling the salesperson up into the sales
dimension implies (correctly) that the relationships among outlet, salesperson,
and customer roll up into the sales to customer relationship. The many-to-many
relationship between customer and sales prevents the erroneous rollup of
customer into sales person and ultimately into sales.

Figure 23. Corporate Dimensions: Step Two. Fully attributed dimensions for the
organization.

7.4.2 Creating a Dimensional Model
The purpose of a data model is to represent a set of requirements for data in a
clear and concise manner. In the case of a dimensional model, it is essential
that the representation can be understood by the user. This model will be the
basis for the analysis undertaken by a user and, if implemented properly, is how
the user will see the data.

Although the structure should look like the model to the user, it may be
physically implemented differently based on the technology used to create,
maintain, and access it. We discuss this translation and completion of the model
later in this chapter (see 7.5, “Design the Warehouse” on page 69).

The remainder of this section documents a set of steps to create a dimensional
model that will be used to create the target data warehouse for the user ′s data
analysis requirements.

7.4.2.1 Dimensions and Measures
A user typically needs to evaluate, or analyze, some aspect of the organization′s
business. The requirements that have been collected must represent the two
key elements of this analysis: what is being analyzed, and the evaluation criteria
for what is being analyzed. We refer to the evaluation criteria as measures and
what is being analyzed as dimensions.

Our first step in creating a model is to identify the measures and dimensions
within our requirements. A set of questions is defined in the case study that we

Chapter 7. The Process of Data Warehousing 55

use as our sample requirements (see A.3.5, “What Do the Users Want?” on
page 166). We restate these here:

 1. What is the average quantity on-hand and reorder level this month for each
model in each manufacturing plant?

 2. What is the total cost and revenue for each model sold today, summarized
by outlet, outlet type, region, and corporate sales levels?

 3. What is the total cost and revenue for each model sold today, summarized
by manufacturing plant and region?

 4. What percentage of models are eligible for discounting and of those, what
percentage is actually discounted when sold, by store, for all sales this
week? This month?

 5. For each model sold this month, what is the percentage sold retail, the
percentage sold corporately through an order desk, and the percentage sold
corporately by a salesperson?

 6. Which models and products have not sold in the last week? In the last
month?

 7. What are the top five models sold last month by total revenue? By quantity
sold? By total cost?

 8. Which sales outlets had no sales recorded last month for each of the models
in each of the three top five lists?

 9. Which sales persons had no sales recorded last month for each of the
models in each of the three top five lists?

By analyzing these questions, we define the dimensions and measures needed
to meet the requirements (see Table 1).

Because we have already created the dimensions of CelDial (see Figure 23 on
page 55), we do not go through the steps here to roll up the lower level entities

Table 1. Dimensions, Measures, and Related Questions

Dimensions and Measures Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Dimensions

Sales X X X X X

Manufacturing X X

Product X X X X X X X X

Measures

Average quantity on hand X

Total cost X X X

Total revenue X X X

Quantity sold X

Percentage of models eligible for
discount

X

Percentage of models eligible for
discount that are actually discounted

X

Percentage of a model sold through a
retail outlet

X

Percentage of a model sold through a
corporate sales office order desk

X

Percentage of a model sold through a
sales person

X

56 Data Modeling Techniques for Data Warehousing

into each dimension. We only list the dimensions relevant to our requirements.
If we did not have a corporate set of requirements to use here, we would have
used the requirements generated from the questions in 7.4.2.1, “Dimensions and
Measures” on page 55. This would have been a time-consuming exercise, but
more importantly we would have had an incomplete set of dimensions and data.
For example, we would have been unaware of the existence of the Customer and
Component dimensions and the Number of Cash Registers and Floor Space
attributes of the Sales dimension (see Figure 23 on page 55).

At this point we review the dimensions to ensure we have the data we need to
answer our questions. No additional attributes are required for the sales and
manufacturing dimensions. However, the product dimension as it stands cannot
answer questions 2 and 3. To meet this need, we add the unit cost of a model to
the product dimension. The derivation rule for this is defined in the case study
(see A.3.4, “Defining Cost and Revenue” on page 165).

Based on the case study, there is interest in knowing the unit cost of a model at
a point in time. We therefore conclude that a history of unit cost is necessary
and add begin and end dates to fill out the product dimension (see Figure 24 on
page 58).

7.4.2.2 Adding a Time Dimension
To properly evaluate any data it must be set in its proper context. This context
always contains an element of time. Therefore we recommend the creation of a
time dimension once for the organization. Be aware that adding time to another
dimension as we did with product is a separate discussion. Here we only
discuss time as a dimension of its own.

For most organizations, the lowest level of time that is relevant is an individual
day. This is true for CelDial and so we choose day as our lowest level of
granularity. Analyzing the requirements we can see a need for reporting by day,
week, and month. Because we do not have more information about CelDial, we
will not consider adding other attributes such as period, quarter, year, and day of
week. When you initially create your time dimension, consider additional
attributes such as those above and any others that may apply to your
organization. We now have a time dimension that meets CelDial ′s analysis
requirements. This completes the dimensions we need to meet the documented
case study requirements (see Figure 24 on page 58).

Chapter 7. The Process of Data Warehousing 57

Figure 24. Dimensions of CelDial Required for the Case Study

7.4.2.3 Creating Facts
Together, one set of dimensions and its associated measures make up what we
call a fact. Organizing the dimensions and measures into facts is the next step.
This is the process of grouping dimensions and measures together in a manner
that can address the specified requirements.

We will create an initial fact for each of the queries in the case study. For any
measures that describe exactly the same set of dimensions, we will create only
one fact (see Figure 25 on page 59).

Note that questions 6, 8, and 9 have no measures associated with them (see
Table 1 on page 56). Had we not merged question 6 with questions 5 and 7 into
fact 4, and questions 8 and 9 with question 2 into fact 2, these would produce
facts containing no measures. Such facts are called factless facts because they
only record that an event, in this case the sale of a product at a point in time
(facts 2 and 3) at a specific location (fact 2 only), has occurred. No other
measurement is required.

7.4.2.4 Granularity, Additivity, and Merging Facts
The granularity of a fact is the level of detail at which it is recorded. If data is to
be analyzed effectively, it must all be at the same level of granularity. As a
general rule, data should be kept at the highest (most detailed) level of
granularity. This is because you cannot change data to a higher level than what
you have decided to keep. You can, however, always roll up (summarize) the
data to create a table with a lower level of granularity.

Closely related to the granularity issue is that of additivity, the ability of
measures to be summarized. Measures fall into three categories: fully additive,
nonadditive, and semiadditive. An example of a nonadditive measure is a

58 Data Modeling Techniques for Data Warehousing

Figure 25. Initial Facts

percentage. You simply cannot add the percentages from two facts together and
come up with a meaningful result. An example of a semiadditive measure is a
balance. Although you can add the balances from two accounts to get a total
balance, you cannot add two balances from the same account at two different
points in time. Because the balance is additive only across some dimensions,
we call it a semiadditive measure. A value that can be added across all
dimensions is considered to be fully additive.

Additivity becomes important when you consider the possible summarizations
that will occur on a fact table. Generally, it is desirable for measures to be fully
additive. When they are not, you should consider breaking them down into their
atomic elements.

Once you have assessed the granularity and additivity that exists in your facts,
consider the possibility of merging facts. This may require changing the
granularity of a particular fact. Usually, merging facts will expand the range of
analyses that can be performed on the fact. This is because merging facts often
implies adding dimensions to a fact.

Let′s review the granularity and additivity of the facts we have generated and
then consider the possibility of merging facts.

Chapter 7. The Process of Data Warehousing 59

Granularity and Additivity: When reviewing fact 1, we immediately discover a
problem with granularity. The average quantity on hand is a monthly figure,
whereas the total cost and total revenue are daily figures. We must either split
this into two facts or make the time dimension consistent. This means bringing
time down to the lowest level of the two in question, which is day. However,
because average quantity on hand is nonadditive, we have to store actual
quantity on hand and let the query calculate an average. Making quantity on
hand fully additive increases our range of analysis, so this seems to be the best
choice.

Fact 2 also has a problem with the time dimension in that two different levels of
granularity (day for query 2 and month for queries 8 and 9) exist. However,
because all of the measures are fully additive, we will simply set the grain of
time to a day. The grain is the fundamental atomic level of data to be
represented in the fact table. A query can then handle any summarization to the
monthly level.

Facts 3 and 4 both present difficult choices. As with the previous facts, we have
two distinct grains of time. However, in this case neither grain can roll up into
the other. To change the grain means setting time at the day level and
summarizing up for both week and month. This becomes difficult because many
of the measures are non additive. This seems to speak against changing the
time granularity and in favor of splitting into multiple facts. The result, however,
would be two facts containing exactly the same measures, with only the grain of
the time dimension making a difference. This would certainly prove confusing
when an analyst is trying to determine which fact to query against. Our
preference would be to set the granularity at the day level and store the atomic
elements of the percentage calculations for both of these facts. This is based on
the idea that if the measures are the same, then having two facts is an
unnecessary redundancy. Therefore in fact 3 we will replace the percentages
with: quantity of model sold through a retail outlet, quantity of a model sold
through a corporate sales office, and quantity of a model sold through a
salesperson. Together with total quantity sold, which already exists in this fact,
these measures will allow the percentages to be calculated. Similarly, in fact 4
we will replace the percentages with: number of models eligible for discount,
quantity of models eligible for discount actually sold, and quantity of models sold
at a discount.

Fact Consolidation: We have resolved the granularity and additivity problems
with our facts (see Figure 26 on page 61). It is time to consider which, if any,
can be consolidated. There are three main reasons for consolidating facts.
First, it is easier for a user to find the data needed to satisfy a query if there are
fewer places to look. Second, when you merge facts you expand the analysis
potential because you can relate more measures to more dimensions at a higher
level of granularity. Of course this is true only if it is valid to relate the
dimensions and measures you are merging. Third, the fewer facts you have, the
less administration there is to do.

The first step in evaluating the merge possibilities is to determine for each
measure which additional dimensions can be added to increase its granularity.

Reviewing fact 1 we see that total cost and total revenue could be further broken
down by the sales dimension. However, the same cannot be said for quantity on
hand or reorder level. In fact, there is no finer breakdown for quantity on hand

60 Data Modeling Techniques for Data Warehousing

Figure 26. Intermediate Facts. Resolution of Granularity and Additivity Issues

than product and manufacturing. Therefore, we recommend no changes for fact
1.

Fact 2 already has all the dimensions present in facts 3 and 4. Therefore no
further dimensions are necessary to allow a merger with facts 3 and 4. Let′s
examine facts 3 and 4 to see whether this merger is possible.

Adding the sales dimension to fact 3 necessitates some interesting changes.
Certainly the total cost, total revenue, and total quantity sold can be further
refined by adding the sales dimension. However, the sales dimension contains
both outlet type and salesperson data. Using this structure we can classify the
total quantity sold, negating the need to store the three individual totals. Facts 2
and 3 should definitely be merged (see Figure 27 on page 62).

Chapter 7. The Process of Data Warehousing 61

Figure 27. Merging Fact 3 into Fact 2

Adding the product dimension to fact 4 to facilitate the consolidation with fact 2
has similar results to our efforts with fact 3. The number of models eligible for
discount can be calculated directly from the product dimension. Therefore it is
no longer needed in the consolidated fact. Because the product dimension tells
us whether an individual model is eligible for discount, we can use the total
quantity sold (consolidated from fact 3) to represent the quantity of models
eligible for discount actually sold. We have two options for quantity of models
sold at a discount. One is to keep it as it is, which would meet the need.
Another option is to record the discount amount and generate the quantity sold
at a discount by adding up the quantity sold where the discount amount is not
zero. Although this is not strictly required to meet the requirements, the
potential for additional analysis makes this option attractive, and it is the one we
recommend. The result is the consolidation of facts 2, 3, and 4 (see Figure 28).

Figure 28. Merging Fact 4 into the Result of Fact 2 and Fact 3

62 Data Modeling Techniques for Data Warehousing

One last step should be followed before declaring our model complete. The
facts should be reviewed for opportunities to add other dimensions, thus
increasing the potential for valuable analysis.

Again we see that fact 1 cannot be broken down any further. However, fact 2
still presents some opportunities. Both the manufacturing and customer
dimensions can be applied to fact 2. The only other dimension we currently
know about is the component dimension. Clearly it cannot be applied to fact 2.
However, when we look at all the dimensions in fact 2, we see that there is one
other possibility. The dimensions of fact 2 are: sales, product, manufacturing,
customer, and time. All of these dimensions can be identified at the time an
order is placed. The order would add one last level of granularity to fact 2.
Although we have not, up to this point, considered order as a dimension, we do
so now because of its effect on the granularity of fact 2. Because all of the
measures in the fact are valid for an order, and because the increased
granularity increases analysis potential, we recommend adding order to fact 2 as
a dimension. Order is a dimension without attributes, so no dimension is
actually created. We simply add order key to the fact. When we add a
dimension in this manner, we refer to it as a degenerate dimension.

An interesting side effect of adding manufacturing to fact 2 is that we can now
answer query 3 (from the requirements list in 7.4.2.1, “Dimensions and
Measures” on page 55) through either fact. This gives us the option of removing
total cost and total revenue from fact 1. For now, however, we will leave them
there in case there is some value in relating inventory levels to sales activity.

Up to this point we have referred to our facts simply by number. Typically we
name facts by what they represent. Since fact 1 represents inventory, we will
call it the inventory fact. We will refer to fact 2 as the sale fact. Of course, this
may be confusing as we already have a sales dimension. To clarify this, we will
rename the sales dimension to the seller dimension. We now have our
completely modeled facts (see Figure 29).

Figure 29. Final Facts

Chapter 7. The Process of Data Warehousing 63

7.4.2.5 Integration with Existing Models
Once you have completed your facts and dimensions, follow the same process of
setting granularity, additivity, and consolidation with data from your existing
warehouse if you have one. The only significant difference is that you will be
restricted in your ability to change already existing facts, dimensions, and
measures. This is why it is so important to carry the process as far as possible
up front.

In the case study we do not have an existing warehouse. Therefore, at this point
we simply connect our dimensions to our facts to complete the pictures of our
inventory model (see Figure 30) and our sales model (see Figure 31).

Figure 30. Inventory Model

Figure 31. Sales Model

64 Data Modeling Techniques for Data Warehousing

7.4.2.6 Sizing Your Model
Now that we have a model we can estimate how big our warehouse will be. At
this point we can only give rough estimates of the size of our warehouse. We
have enough information to estimate the size of the data in each of our tables.
However, until some decisions are made regarding how these tables are
physically implemented, items such as overhead and indices cannot be included.

To calculate the size of the data in a table, we simply multiply the number of
rows times the length of each row. For our case study, we calculate row length
by adding 4 bytes for each numeric or date attribute, the number of characters
for a character attribute, and the number of digits in a decimal attribute divided
by 2 and rounded up.

The method for determining the number of rows for each table varies. For
seller, manufacturing, and customer, because we do not keep a history of
changes, we simply use the total number of rows from the operational systems.
For manufacturing there are seven plants. CelDial serves 3000 customers.
There are three corporate sales offices, 15 retail stores, and 30 salespeople, for
a total of 48 sellers.

For the remaining entities, the number of rows is dependent on how long we
want to keep the data. In the case study, three complete years of data are
required. Therefore no data can be deleted until the end of the fourth year. (If
we needed three continuous years of data we could delete daily, weekly, or
monthly all data that is more than three years old.)

There will be only one row per day for the time entity. Over four years, this will
be 1,461 rows (4 years x 365 days + 1 day for the leap year).

There are 300 models of product. We must add to this a row for each of 10
changes per week. The result is 2,380 rows (300 models + 10 changes x 52
weeks x 4 years).

Our inventory fact will contain 3,068,100 rows (7 plants x 300 models x 1,461
days).

To determine the number of rows in our sales fact, we calculate corporate and
retail sales separately because they have different volumes and days of
operation. There will be 5,200,000 rows for corporate sales (500 sales x 10
models x 5 days x 52 weeks x 4 years). There will be 2,912,000 rows for retail
sales (1000 sales x 2 models x 7 days x 52 weeks x 4 years). The total number
of rows for the sales fact will be 8,112,000 (5,200,000 corporate sales rows +
2,912,000 retail sales rows). Multiplying the length of a row by the number of
rows in each table and then adding these results together gives us a total of 431
MB (see Table 2 on page 66). Note that the size of the dimensions has no
impact on the size of the warehouse when measured in megabytes. It is typical
for the dimensions to be orders of magnitude smaller than facts. For this
reason, sizing of the fact tables is often the only estimating done at this point.
We only calculate the dimensions here for illustrative purposes.

Chapter 7. The Process of Data Warehousing 65

This is a very preliminary estimate, to be sure. It does, however, enable
technical staff to begin planning for its infrastructure requirements. This is
important because, with the compressed life cycle of a warehouse, you will be
needing that infrastructure soon.

Table 2. Size Estimates for CelDial ′s Warehouse

Table Row Length Number of
Rows

Size (bytes) Size

Manufacturing 64 7 448 0.4 KB

Seller 107 48 5,136 5 KB

Time 15 1461 21,900 21.4 KB

Product 76 2,380 180,880 176.6 KB

Customer 94 3,000 282,000 275.4 KB

Inventory 30 3,068,100 92,043,000 89.9 MB

Sale 43 8,112,000 348,816,000 340.6 MB

Total -- -- 441,349,364 431 MB

7.4.3 Don ′t Forget the Metadata
In the traditional development cycle, a model sees only sparse use after
completion, typically when changes need to be made, or when other projects
require the data. In the warehouse, however, your model is used on a
continuous basis. The users of the warehouse constantly reference the model to
determine the data they want to use to analyze the organization. The rate of
change of the data structure in a warehouse is much greater than that of
operational data structures. Therefore, the technical users of the warehouse
(administrators, modelers, designers, etc.) will also use your model on a regular
basis.

This is where the metadata comes in. Far from just a pretty picture, the model
must be a complete representation of the data you are storing, or it will be of
little use to anybody.

At this point you cannot define all of the metadata. However, this does not mean
you should wait until you can. To properly understand the model, and be able to
confirm that it meets requirements, a user must have access to the metadata
that describes the warehouse in business terms that are easily understood.
Therefore, nontechnical metadata should be documented at this point. During
the design phase, the technical metadata will be added to it.

At the warehouse level, a list should be provided of what is available in the
warehouse. This list should contain the models, dimensions, facts, and
measures available as these will all be used as initial entry points when a user
begins analyzing data.

For each model, provide a name, definition, and purpose. The name simply
gives the user something to focus on when searching. Usually, it is the same as
the fact. The definition identifies what is modeled, and the purpose describes
what the model is used for. The metadata for the model should also contain a
list of dimensions, facts, and measures associated with it, as well as the name of
a contact person so that users can get additional information when they have
questions about the model.

66 Data Modeling Techniques for Data Warehousing

A name, definition, and aliases must be provided for all dimensions, dimension
attributes, facts, and measures. Aliases are necessary because it is often
difficult to come to agreement on a common name for any widely used object.
For dimensions and facts a contact person should be provided.

Metadata about a dimension should also include hierarchy, change rules, load
frequency, and the attributes, facts, and measures associated with the
dimension. The hierarchy defines the relationships between attributes of the
dimension that identify the different levels that exist within it. For example, in
the seller dimension we have the sales region, outlet type (corporate or retail),
outlet, and salesperson as a hierarchy. This documents the roll-up structure of
the dimension. Change rules identify how changes to attributes within a
dimension are dealt with. In some instances, these rules can be different for
individual attributes. Record change rules with the attributes when this is the
case. The load frequency allows the user to understand whether data will be
available when needed.

The attributes of a dimension are used to identify which facts the user wants to
analyze. For example, in our case study, analyzing cost and revenue for the
products that are very expensive to make might be done by only including facts
where the unit cost attribute in the product dimension was greater than $500.00.
For attributes to be used effectively, metadata about them should include the
data type, domain, and derivation rules. At this point, a general indication of the
data type (character, date, numeric, etc.) is sufficient. Exact data type definition
can be done during design. The domain of an attribute defines the set of valid
values that it can hold. For attributes that contain derived values, the rules for
determining the value must be documented.

Metadata about a fact should include the load frequency, the measures and
dimensions associated with the fact, and the grain of time for the fact. Although
it is possible to derive the grain of time for a fact through its relationship to the
time dimension, it is worthwhile explicitly stating it here. It is essential for
proper analysis that this grain be understood.

Metadata about a measure should include its data type, domain, derivation rules,
and the facts and dimensions associated with the measure.

To sum up the metadata required at this point, we provide a graphic
representation of the metadata and the access paths users might travel when
analyzing their data (see Figure 32 on page 68).

Chapter 7. The Process of Data Warehousing 67

Figure 32. Warehouse Metadata. Metadata and user access paths at the end of the
model ing phase

7.4.4 Validating the Model
Before investing a lot of time and effort in designing your warehouse, it is a good
idea to validate your model with the user. The purpose of such a review is
twofold. First, it serves to confirm that the model can actually meet the user′s
requirements. Second, and just as important, a review should confirm that the
user can understand the model. Remember that once the warehouse is
implemented, the user will be relying on the model on a regular basis to access
data in the warehouse. No matter how well the model meets the user ′s
requirements, your warehouse will fail if the user cannot understand the model
and, consequently, cannot access the data.

Validation at this point is done at a high level. This model is reviewed with the
user to confirm that it is understandable. Together with the user, test the model
by resolving how you will answer some of the questions identified in the
requirements.

It is almost certain that the model will not meet all of the user ′s requirements.
This does not mean that you stop and go back to the beginning. Expect on your
first cut of the model to meet perhaps 50% of the requirements. Take this 50%
(or however much is validated) of the model and start working on the design.
The remainder should be sent back to the requirements gathering stage. Either
the requirements need to be better understood or, as is often the case, they
have changed and need to be redefined. Usually, this will lead to additions, and
possibly changes, to the model already created. In the mean time, the validated

68 Data Modeling Techniques for Data Warehousing

portion of the model will go through the design phase and begin providing
benefits to the user.

The iteration of development and the continued creation of partially complete
models are the key elements that provide the ability to rapidly develop data
warehouses.

7.5 Design the Warehouse
From the modeling perspective, our main focus in discussing the design phase of
data warehouse development is identifying the additional metadata required to
make the model complete. Aside from the metadata, there are a few cases
where the design can impact the model. We identify these as well. We do not
go beyond the design steps to discuss specific design techniques as this is
beyond the scope of the book.

We begin this section with a short discussion on the differences in design for
operational systems and data warehouse systems. This is followed with sections
for each step in the design process. The focus of these sections is on the impact
that the design techniques have on the model and its metadata. As the creation
of a data mining application is primarily a design, not a modeling, function, we
close this section with a discussion of data mining development.

7.5.1 Data Warehouse Design versus Operational Design
Once a model is created and validated, it is analyzed to determine the best way
to physically implement it. Although similar in nature to modeling and design in
the operational world, the actual steps in data warehousing are different. The
discussion here assumes that operational models are typically ER models and
the data warehousing models are dimensional models. You have probably
already noticed that the data warehouse model looks more physical in nature
than a model of an operational system. Probably the feature that most
differentiates the data warehouse model from the logical operational model is
the denormalization of the dimensions. Compare the product dimension in the
dimensional model to the relevant entities in the ER model (see Figure 33 on
page 70).

Chapter 7. The Process of Data Warehousing 69

Figure 33. Dimensional and ER Views of Product-Related Data

The reason for this difference is the different role the model plays in the data
warehouse. To the user, the data must look like the data warehouse model. In
the operational world, a user does not generally use the model to access the
data. The operational model is only used as a tool to capture requirements, not
to access data.

Data warehouse design also has a different focus from operational design.
Design in an operational system is concerned with creating a database that will
perform well based on a well-defined set of access paths. Data warehouse
design is concerned with creating a process that will retrieve and transform
operational data into useful and timely warehouse data.

This is not to imply that there is no concern for performance in a data
warehouse. On the contrary, due to the amount of data typically present in a

70 Data Modeling Techniques for Data Warehousing

data warehouse, performance is an essential consideration. However,
performance considerations cannot be handled in a data warehouse in the same
way they are handled in operational systems. Access paths have already been
built into the model due to the nature of dimensional modeling. The
unpredictable nature of data warehouse queries limits how much further you can
design for performance. After implementation, additional tuning may be possible
based on monitoring usage patterns.

One area where design can impact performance is renormalizing, or
snowflaking, dimensions. This decision should be made based on how the
specific query tools you choose will access the dimensions. Some tools enable
the user to view the contents of a dimension more efficiently if it is snowflaked
while for other tools the opposite is true. As well, the choice to snowflake will
also have a tool-dependent impact on the join techniques used to relate a set of
dimensions to a fact. Regardless of the design decision made, the model should
remain the same. From the user perspective, each dimension should have a
single consolidated image.

7.5.2 Identifying the Sources
Once the validated portion of the model passes on to the design stage, the first
step is to identify the sources of the data that will be used to load the model.

These sources should then be mapped to the target warehouse data model.
Mapping should be done for each dimension, dimension attribute, fact, and
measure. For dimensions and facts, only the source entities (for example,
relational tables, flat files, IMS DBDs and segments) need be documented. For
dimension attributes and measures, along with the source entities, the specific
source attributes (such as columns and fields) must be documented.

Conversion and derivation algorithms must also be included in the metadata. At
the dimension attribute and measure level, this includes data type conversion,
algorithms for merging and splitting source attributes, calculations that must be
performed, domain conversions, and source selection logic.

A domain conversion is the changing of the domain in the source system to a
new set of values in the target. For example, in the operational system you may
use codes for gender, such as 1=female and 2=male. You may want to convert
this to female and male in the target system. Such a conversion should be
documented in the metadata.

In some cases you may choose to load your target attribute from different source
attributes based on certain conditions. Suppose you have a distributed sales
organization and each location has its own customer file. However, your
accounts receivable system is centralized. If you try to relate customer
payments to sales data, you will likely have to pull some customer data from
different locations based on where the customer does business. Source
selection logic such as this must be included in the metadata.

At the fact and dimension level, conversion and derivation metadata includes the
logic for merging and splitting rows of data in the source, the rules for joining
multiple sources, and the logic followed to determine which of multiple sources
will be used.

Identifying sources can also cause changes to your model. This will occur when
you cannot find a valid source. Two possibilities exist. First, there simply is no

Chapter 7. The Process of Data Warehousing 71

source that comes close to meeting the user′s requirements. This should be
very rare, but it is possible. If only a portion of the model is affected, remove
that component and continue designing the remainder. Whatever portion of the
model cannot be sourced must return to the requirements stage to redefine the
need in a manner that can be met.

A more likely scenario is that there will be a source that comes close but is not
exactly what the user had in mind. In the case study we have a product
description but no model description. The model code is available to select
individual models for analysis, but it is hardly user friendly. However, rather
than not meet the requirement to perform analysis by model, model code will be
used. If user knowledge of source systems is high, this may occur during the
modeling stage, but often it occurs during design.

All of the metadata regarding data sources must be documented in the data
warehouse model (see Figure 34 on page 77).

7.5.3 Cleaning the Data
Data cleaning has three basic components: validation of data, data
enhancement, and error handling. Validation of data consists of a number of
checks, including:

• Valid values for an attribute (domain check)
• Attribute valid in context of the rest of the row
• Attribute valid in context of related rows in this or other tables
• Relationship between rows in this and other tables valid (foreign key check)

This is not an exhaustive list. It is only meant to highlight the basic concepts of
data validation.

Data enhancement is the process of cleaning valid data to make it more
meaningful. The most common example is name and address information.
Often we store name and address information for customers in multiple
locations. Over time, these tend to become unsynchronized. Merging data for
the customer is often difficult because the data we use to match the different
images of the customer no longer matches. Data enhancement resynchronizes
this data.

Error handling is a process that determines what to do with less than perfect
data. Data may be rejected, stored for repair in a holding area, or passed on
with its imperfections to the data warehouse. From a data model perspective,
we only care about the data that is passed on to the data warehouse. The
metadata for imperfect data should include statements about the data quality
(types of errors) to be expected and the data accuracy (frequency of errors) of
the data (see Figure 34 on page 77).

7.5.4 Transforming the Data
Data transformation is a critical step in any data warehouse development effort.
Two major decisions must be made at this point: how to capture the source data,
and a method for assigning keys to the target data. Along with these two
decisions, you must generate a plan documenting the steps to get the data from
source to target. From a modeling perspective, this is simply adding more
metadata.

72 Data Modeling Techniques for Data Warehousing

7.5.4.1 Capturing the Source Data
The first step in transformation is capturing the source data. Initially, a full copy
of the data is required. Once this initial copy has been loaded, a means of
maintaining it must be devised. There are four primary methods of capturing
data:

• Full refresh
• Log capture
• Time-stamped source
• Change transaction files

A full refresh, as the name implies, is simply a full copy of the data to be moved
into the target data warehouse. This copy may replace what is in the data
warehouse, add a complete new copy at the new point in time, or be compared
to the target data to produce a record of changes in the target.

The other three methods focus on capturing only what has changed in the
source data. Log capture extracts relevant changes from the DBMS′s log files.
If source data has been time stamped, the extract process can select only data
that has changed since the previous extract was run. Some systems will
produce a file of changes that have been made in the source. An extract can
use this in the same manner it would use a log file.

From a modeling perspective, the method used should be documented in the
metadata for the model. As well, the schedule of the extract should be
documented at this point. Later, in the production environment, actual extract
statistics will be added to this metadata (see Figure 34 on page 77).

7.5.4.2 Generating Keys
Key selection in the data warehouse is a difficult issue. It involves a trade-off
between performance and management.

Key selection applies mainly to dimensions. The keys chosen for the
dimensions must be the foreign keys of the fact.

There are two choices for dimension keys. Either an arbitrary key can be
assigned, or identifiers from the operational system can be used. An arbitrary
key is usually just a sequential number where the next available number is
assigned when a new key is required.

To uniquely represent a dimension using identifiers from an operational system
usually requires a composite key. A composite key is a key made up of multiple
columns. An arbitrary key is one column and is almost always smaller than an
operationally derived key. Therefore arbitrary keys will generally perform joins
faster.

Generation of an arbitrary key is slightly more complex. If you get your key from
the operational system, there is no need to determine the next available key.
The exception to this is where history of a dimension is kept. In this case, when
you use identifiers from an operational system, you must add an additional key
because keys must be unique. One option is an arbitrary sequence number.
Another is to add begin and end time stamps to the dimension key. Both of
these options also work for an arbitrary key, but it is simpler just to generate a
new arbitrary key when an entry in a dimension changes.

Chapter 7. The Process of Data Warehousing 73

Once the history issue is considered, it certainly seems as if an arbitrary key is
the way to go. However, the last factor in key selection is its impact on the fact
table. When a fact is created, the key from each dimension must be assigned to
it. If operationally derived keys, with time stamps for history, are used in the
dimensions, there is no additional work when a fact is created. The linkage
happens automatically. With arbitrary keys, or arbitrary history identifiers, a key
must be assigned to a fact at the time the fact is created.

There are two ways to assign keys. One is to maintain a translation table of
operational and data warehouse keys. The other is to store the operational keys
and, if necessary, time stamps, as attribute data on the dimension.

The above discussion also applies to degenerate keys on the fact. The only
difference is that there is no need to join on a degenerate key, thus diminishing
the performance impact of an arbitrary key. The issue is more likely to come
down to whether a user may need to know the value of a degenerate key for
analysis purposes or that it is simply recorded to create the desired level of
granularity.

The choice, then, is between better performance of an arbitrary key and easier
maintenance of an operational key. The questions of how much better
performance and how much more maintenance must be evaluated in your own
organization.

Regardless of the choice you make, the keys, and the process that generates
them, must be documented in the metadata (see Figure 34 on page 77). This
data is necessary for the technical staff who administer and maintain the data
warehouse. If the tools you use do not hide join processing, the user may need
to understand this also. However, it is not recommended that a user be required
to have this knowledge.

7.5.4.3 Getting from Source to Target
It is often the case that getting from source to target is a multiple step process.
Rarely can it be completed in one step. Among the many reasons for creating a
multiple step process to get from source to target are these:

• Sources to be merged are in different locations
• Not all data can be merged at once as some tables require outer joins
• Sources are stored on multiple incompatible technologies
• Complex summarization and derivation must take place

The point is simply that the process must be documented. The metadata for a
model must include not only the steps of the process, but the contents of each
step, as well as the reasons for it. It should look something like this:

 1. Step 1 - Get Product Changes

Objective of step
Create a table containing rows where product information has
changed

Inputs to step
Change transaction log for Products and Models, Product
Component table, Component table, and the Product dimension
table

Transformations performed
For each change record, read the related product component and
component rows. For each product model, the cost of each

74 Data Modeling Techniques for Data Warehousing

component is multiplied by the number of components used to
manufacture the model. The sum of results for all components
that make up the model is the cost of that model. A key is
generated for each record consisting of a sequential number
starting with the next number after the highest used in the product
dimension table. Write a record to the output table containing the
generated key, the product and model keys, the current date,
product description, model code, unit cost, suggested wholesale
price, suggested retail price, and eligible for volume discount
code.

Outputs of step
A work table containing new rows for the product dimension
where there has been a change in a product or model

 2. Step 2 - Get Component Changes

Objective of step
Create a table containing rows where component information has
changed

Inputs to step
Change transaction log for Product Components and Components,
Product table, Product Model table, the Product dimension table,
and the work table from step 1

Transformations performed
For each change record, check that the product and model exist
in the work table. If they do, the component change is already
recorded so ignore the change record. If not, read the product
and model tables for related information. For each product
model, the cost of each component is multiplied by the number of
components used to manufacture the model. The sum of results
for all components that make up the model is the cost of that
model. A key is generated for each record consisting of a
sequential number starting with the next number after the highest
used in the product dimension table. Add a record to the work
table containing the generated key, the product and model keys,
the current date, product description, model code, unit cost,
suggested wholesale price, suggested retail price, and eligible for
volume discount code.

Outputs of step
A work table containing additional new rows for the product
dimension where there has been a change in the product
component table or the component table

 3. Step 3 - Update Product Dimension

Objective of step
Add changes to the Product dimension

Inputs to step
Work table from step 2

Transformations performed
For each row in the work table, a row is inserted into the product
dimension. The effective to date is set to null. The effective to
date of the previously current row is set to the day before the
effective from date of the new row. A row is also written to a
translation table containing the generated key, product key, model
key, and change date.

Chapter 7. The Process of Data Warehousing 75

Outputs of step
A translation table for use in assigning keys to facts and an
updated product dimension

We do not suggest that this is the best (or even a good) transform method. The
purpose here is to point out the type of metadata that should be recorded (see
Figure 34 on page 77).

7.5.5 Designing Subsidiary Targets
Subsidiary targets are targets derived from the originally designed fact and
dimension tables. The reason for developing such targets is performance. If, for
example, a user frequently runs a query that sums across one dimension and
scans the entire fact table, it is likely that a subsidiary target should be created
with the dimension removed and measures summed to produce a table with less
rows for this query.

Creating a subsidiary dimension should only be done if the original dimension
will not join properly with a subsidiary fact. This is likely to be a tool-dependent
decision.

Because this is a performance issue, rules should be defined for when a
subsidiary target will be considered. Consider a maximum allowable time for a
query before an aggregate is deemed necessary. You may also create a sliding
scale of time it takes to run a query versus the frequency of the query.

Metadata for subsidiary targets should be the same as for the original facts and
dimensions, with only the aggregates themselves being different. However, if
your suite of tools can hide the subsidiary targets from the user and select them
when appropriate based on the query, the metadata should be made visible only
for technical purposes. The metadata should contain the reasons for creating
the subsidiary target (see Figure 34 on page 77).

Often it is not possible to predict which subsidiary targets will be necessary at
the design stage. These targets should not be created unless there is a clear
justification. Rather than commit significant resources to them at this time,
consider creating them as a result of monitoring efforts in the
post-implementation environment.

76 Data Modeling Techniques for Data Warehousing

Figure 34. The Complete Metadata Diagram for the Data Warehouse

7.5.6 Validating the Design
During the design stage you will create a test version of the production
environment. When it comes time to validate the design with the user, hands-on
testing is the best approach. Let the user try to answer questions through
manipulation of the test target. Document any areas where the test target
cannot provide the data requested.

Aside from testing, review with the user any additions and changes to the model
that have resulted from the design phase to ensure they are understandable.

Similar to the model validation step, pass what works on to the implementation
phase. What does not work should be returned to the requirements phase for
clarification and reentry into modeling.

7.5.7 What About Data Mining?
Decisions in data warehouse modeling would typically not be affected by a
decision to support data mining. However, the discussion on data mining, as
one of the key data analysis techniques, is presented here for your information
and completeness.

As stated previously, data mining is about creating hypotheses, not testing them.
It is important to make this distinction. If you are really testing hypotheses, the

Chapter 7. The Process of Data Warehousing 77

dimensional model will meet your requirements. It cannot, however, safely
create a hypothesis. The reason for this is that by defining the dimensions of the
data and organizing dimensions and measure into facts, you are building the
hypotheses based on known rules and relationships. Once done, you have
created a paradigm. To create a hypothesis, you must be able to work outside
the paradigm, searching for patterns hidden in the unknown depths of the data.

There are, in general, four steps in the process of making data available for
mining: data scoping, data selection, data cleaning, and data transformation. In
some cases, a fifth step, data summarization, may be necessary.

7.5.7.1 Data Scoping
Even within the scope of your data warehouse project, when mining data you
want to define a data scope, or possibly multiple data scopes. Because patterns
are based on various forms of statistical analysis, you must define a scope in
which a statistically significant pattern is likely to emerge. For example, buying
patterns that show different products being purchased together may differ greatly
in different geographical locations. To simply lump all of the data together may
hide all of the patterns that exist in each location. Of course, by imposing such a
scope you are defining some, though not all, of the business rules. It is
therefore important that data scoping be done in concert with someone
knowledgeable in both the business and in statistical analysis so that artificial
patterns are not imposed and real patterns are not lost.

7.5.7.2 Data Selection
Data selection consists of identifying the source data that will be mined.
Generally, the main focus will be on a transaction file. Once the transaction file
is selected, related data may be added to your scope. The related data will
consist of master files relevant to the transaction. In some cases, you will want
to go beyond the directly related data and delve into other operational systems.
For example, if you are doing sales analysis, you may want to include store staff
scheduling data, to determine whether staffing levels, or even individual staff,
create a pattern of sales of particular products, product combinations, or levels
of sales. Clearly this data will not be part of your transaction, and it is quite
likely the data is not stored in the same operational system.

7.5.7.3 Data Cleaning
Once you have scoped and selected the data to be mined, you must analyze it
for quality. When cleaning data that will be mined, use extreme caution. The
simple act of cleaning the data can remove or introduce patterns.

The first type of data cleaning (see 7.5.3, “Cleaning the Data” on page 72) is
data validation. Validating the contents of a source field or column is very
important when preparing data for mining. For example, if a gender code has
valid values of M and F, all other values should be corrected. If this is not
possible, you may want to document a margin of error for any patterns
generated that relate to gender. You may also want to determine whether there
are any patterns related to the bad data that can reveal an underlying cause.

Documenting relationships is the act of defining the relationships when adding in
data such as the sales schedules in our data selection example. An algorithm
must be developed to determine what part of the schedule gets recorded with a
particular transaction. Although it seems clear that a sales transaction must be
related to the schedule by the date and time of the sale, this may not be enough.
What if some salespeople tend to start earlier than their shift and leave a little

78 Data Modeling Techniques for Data Warehousing

earlier? As long as it all balances out, it may be easier for staff to leave the
scheduling system alone, but your patterns could be distorted by such an
unknown. Of course, you may not be able to correct the problem with this
example. The point is simply that you must be able to document the relationship
to be able to correctly transform the data for mining purposes.

The second type of data cleaning (see 7.5.3, “Cleaning the Data” on page 72),
data enhancement, is risky when preparing data for mining. It is certainly
important to be able to relate all images of a customer. However, the
differences that exist in your data may also expose hidden patterns. You should
proceed with enhancement cautiously.

7.5.7.4 Data Transformation
Depending on the capabilities of the tools you select to perform data mining, a
set of relational tables or a large flat file may meet your requirements.
Regardless, data transformation is the act of retrieving the data identified in the
scoping and selection processes, creating the relationships and performing
some of the validation documented in the cleaning process, and producing the
file or tables to be mined. We say ″some of the validation″ because data that is
truly incorrect should be fixed in the source operational system before
transformation, unless you need to find patterns to indicate the cause of the
errors. Such pattern searching should only be necessary, and indeed possible, if
there is a high degree of error in the source data.

7.5.7.5 Data Summarization
There may be cases where you cannot relate the transaction data to other data
at the granularity of the transaction; for example, the data needed to set the
scope at the right level is not contained in the original transaction data. In such
cases, you may consider summarizing data to allow the relationships to be built.
However, be aware that altering your data in this way may remove the detail
needed to produce the very patterns for which you are searching. You may want
to consider mining at two levels when this summarization appears to be
necessary.

7.6 The Dynamic Warehouse Model
In an operational system, shortly after implementation the system stabilizes and
the model becomes static, until the next development initiative. But, the data
warehouse is more dynamic, and it is possible for the model to change with no
additional development initiative simply because of usage patterns.

Metadata is constantly added to the data warehouse from four sources (see
Figure 35 on page 80). Monitoring of the warehouse provides usage statistics.
The transform process adds metadata about what and how much data was
loaded and when it was loaded. An archive process will record what data has
been removed from the warehouse, when it was removed, and where it is
stored. A purge process will remove data and update the metadata to reflect
what remains in the data warehouse.

Chapter 7. The Process of Data Warehousing 79

Figure 35. Metadata Changes in the Production Data Warehouse Environment

Based on usage and performance statistics or requests from users a data
warehouse administrator may add or remove aggregates or alter archive and
purge schedules. Such changes must also be reflected in the metadata (see
Figure 34 on page 77).

Once a data warehouse is implemented, usage of it will spawn new requests and
requirements. This will start another cycle of development, continuing the
iterative and evolutionary process of building the data warehouse. As you can
see, the data model is a living part of a data warehouse. Through the entire life
cycle of the data warehouse, the data model is both maintained and used (see
Figure 36). The process of data warehouse modeling can be truly endless.

Figure 36. Use of the Warehouse Model throughout the Life Cycle

80 Data Modeling Techniques for Data Warehousing

Chapter 8. Data Warehouse Modeling Techniques

Data warehouse modeling is the process of building a model for the data that is
to be stored in the data warehouse. The model produced is an abstract model,
and in this sense, it is a representation of reality, or at least a part of reality
which the data warehouse is assumed to support.

When considered like this, data warehouse modeling seems to resemble
traditional database modeling, which most of us are familiar with in the context
of database development for operational applications (OLTP database
development). This resemblance should be considered with great care,
however, because there are a number of significant differences between data
warehouse modeling and OLTP database modeling. These differences impact
not only the modeling process but also the modeling techniques to be used.

In Chapter 7, “The Process of Data Warehousing,” the basic issues and steps of
a data warehouse modeling process were described. This chapter focuses
entirely on the techniques involved in a data warehouse modeling process. It
extends and complements Chapter 7, “The Process of Data Warehousing” in
several ways:

• Whereas Chapter 7, “The Process of Data Warehousing” focuses on the
modeling process, this chapter focuses on data warehouse modeling
techniques.

• Whereas Chapter 7, “The Process of Data Warehousing” in large part deals
with the basic issues of dimensional modeling and illustrates how end-user
requirements can be captured and somehow formalized in what is an initial
dimensional model, this chapter investigates data warehouse modeling
beyond these aspects.

• Whereas Chapter 7, “The Process of Data Warehousing” considers data
warehouse modeling primarily from the point of view of rapid development of
an independent data mart, this chapter is concerned with making data
warehouse models that are suitable for integration with other data marts or
can be deployed within a corporate data warehouse environment.

Although we focus on modeling techniques, we try to present the techniques
as part of a structured approach to data warehouse modeling. However,
more work is required in this area to develop a methodological approach to
data warehouse modeling.

8.1 Data Warehouse Modeling and OLTP Database Modeling
Before studying data warehouse modeling techniques, it is worthwhile
investigating the differences between data warehouse modeling and OLTP
database modeling. This will give you a better idea of why new or adapted
techniques are required for performing data warehouse modeling will help you
understand how to set up a data warehouse modeling approach or methodology.

 Copyright IBM Corp. 1998 81

8.1.1 Origin of the Modeling Differences
There are three main reasons why data warehouse modeling requires modeling
techniques other than OLTP database modeling or why traditional modeling
techniques, when used in data warehouse development projects, require a
significantly different focus.

• A data warehouse has base properties that make it fundamentally different
from OLTP databases. In the next section, these properties and the impact
they have on data warehouse modeling are investigated further.

• The computing context in which a data warehouse resides differs from the
context in which OLTP databases reside. Users of OLTP applications are
″shielded″ from the database structure because they interact through user
interfaces and use application services for working with the databases.
Users of a data warehouse, however, are much more directly involved with
the data warehouse model and the way data is organized in the warehouse.
Failing to make models that are simple to understand and directly represent
the end user′s perception of reality is one of the worst things that can
happen to a data warehouse enablement project.

• Inherent to data warehouse enablement is the fuzziness and incompleteness
of end-user requirements and the continuous evolution of the data
warehouse. These incomplete requirements call for a flexible modeling
process and for techniques which are appropriate for evolutionary
development. The risks of flexible and evolutionary software development
are incoherence and inconsistency of the end result. These issues certainly
require attention when performing data warehouse modeling.

Most of the above reasons for why data warehouse modeling is different from
OLTP database modeling also apply in the context of data mart development.
Although the development of data marts may appear to be less complicated than
the development of corporate data warehouses, many of the properties of a data
warehouse that make modeling so different from OLTP database modeling also
apply for data mart development projects. In addition, the impact of end users
and end-user requirements on the modeling process and techniques applied for
data marts become even more important for data warehouses.

8.1.2 Base Properties of a Data Warehouse
Some of the most significant differences between data warehouse modeling and
OLTP database modeling are related to the base properties of a data
warehouse, which are summarized in Figure 37 on page 83.

82 Data Modeling Techniques for Data Warehousing

Figure 37. Base Properties of a Data Warehouse.

A data warehouse is an integrated collection of databases rather than a single
database. It should be conceived as the single source of information for all
decision support processing and all informational applications throughout the
organization. A data warehouse is an organic ′ thing′, and it tends to become
big, if not big from the beginning. In addition to the obvious requirement that a
data warehouse should satisfy the needs of end users, there is also a great need
to achieve maximum consistency throughout the whole data warehouse
environment, at the level of primitive data and derived data, and also within the
information derivation processes themselves.

A data warehouse contains data that belongs to different information subject
areas, which can be the basis for logically partitioning the data warehouse in
several different (conceptual or even physical) databases. A data warehouse
also contains different categories of data. It contains primitive data (the ″System
of Record″) either represented and organized as an accumulation of captured
source data changes, business events and transactions, or as an interpreted and
well-structured historical database. In many cases both representations of
primitive data are present in the data warehouse and are positioned and
mapped to form an integrated collection of data that represents ″the corporate
memory.″ Another major category of data in the data warehouse is that which is
condensed and aggregated in information analysis databases having a format
and layout that is directly suitable for end users to interpret and use. A data
warehouse also usually contains ″support databases,″ which are not directly of
interest to end users for their data analysis activities but are important
components in the process of capturing source data and delivering consistent
information to end users.

Clearly, data warehouse modeling must consist of different kinds of modeling
techniques. The System of Record is usually best if not modeled using the same
modeling techniques as the end-user-oriented information analysis databases.
If, in addition, one considers that end users may be dealing with decision
support tools (query and reporting, OLAP, data mining, ...) and informational
applications that have different usage and development characteristics, it
becomes clear that data warehouse modeling is in fact a compilation of different
modeling techniques, each with its own area of applicability.

Chapter 8. Data Warehouse Modeling Techniques 83

8.1.3 The Data Warehouse Computing Context
Data warehouses have to be developed within a computing context that differs
from the context in which OLTP database applications are developed (see
Figure 38).

Figure 38. Data Warehouse Computing Context.

There is a fundamental difference between the way end users use OLTP
databases and data warehouses. OLTP users are shielded from the databases
by an application layer. They perform tasks, usually consisting of a fixed number
of predefined database operations, which are part of a fixed transaction
workflow.

Data warehouse applications are totally different. They are data-centric rather
than process-centric. End users deal almost directly with the data and there are
no fixed workflows (with a few exceptions here and there). End users are not
interested in recording data in the warehouse: they want to get information out
of the warehouse. They raise questions against the warehouse, test and verify
hypotheses with information they drag out of the warehouse, reconstruct chains
of events, which they then analyze possibly to detect patterns or seasonal
trends, and make extrapolations and projections for the future.

Data warehouses are very much open collections of data, and end-user
involvement in the enablement process is known to be a vital element of
success. In addition, good data warehouses realize what could be called the
information supermarket principle, whereby end users freely access the data
warehouse when they need information for their own purposes.

Figure 38 also points to the other side of the coin. Data warehouse developers,
including those who do data warehouse modeling, do have to take into account
that the data warehouse ″input context″ consists of a legacy data processing
environment residing in a legacy business process environment. Required data
may not be available or perhaps cannot be captured at the sufficient level of
detail, unless money and effort are spent changing the legacy input environment.
Data warehouse enablement projects therefore often get involved with business
process and source application reengineering.

84 Data Modeling Techniques for Data Warehousing

All of this has a fundamental impact on the modeling process as well as on the
techniques used for producing the data warehouse model, including the ″bag of
tricks″ (heuristics, guidelines, metrics, etc.) the data warehouse modeler uses to
make things happen the way they should happen.

8.1.4 Setting Up a Data Warehouse Modeling Approach
One of the real challenges that a data warehouse modeling expert faces is to
combine suitable modeling techniques in an approach that is end-user focused,
leads to a logically integrated historical data organization, supports the delivery
of consistent information to end users, and is flexible and scalable.

The main requirements for a solid data warehouse modeling approach can be
summarized as follows:

• It has to incorporate several different modeling techniques in a well-balanced
and integrated approach. In this chapter, we investigate a number of
modeling techniques that we believe are core techniques for data warehouse
modeling.

• Each modeling technique should have its own area of applicability.
Obviously, the fewer techniques that are blended and integrated into a
modeling process, the easier the process becomes. Modeling techniques
with a broad scope of applicability therefore are highly recommended. This
chapter should help you in selecting suitable modeling techniques and
recognizing their scope of applicability.

• It is of the utmost importance that end users see a single, well-integrated,
and simple-to-interpret logical model of the data warehouse. This logical
model is one of the centerpieces of the data warehouse metadata. Simplicity
for the end user and integration and consolidation of the historical data are
key principles that the modeling approach should help provide.

• Recalling that a data warehouse environment is an organic thing and that
fuzziness and incompleteness are inherent characteristics of data warehouse
enablement, any approach to data warehouse modeling should be flexible
and provide support for an evolutionary data warehouse development
process. End users must be involved maximally in the modeling process
itself. Therefore, the modeling techniques and the results they produce must
be understandable for information analysts who have, by definition, no
technical IT background. Knowing that, in addition, flexibility and support for
evolutionary development call for the support of constant changes and
extensions applied to the data warehouse model. However, providing this
flexibility in setting up a data warehouse modeling approach is very much a
challenge.

Tools can have a significant impact on the establishment of a data warehouse
modeling approach for an organization. Data modeling tools and metadata
catalogs are important for the data warehouse modeling approach. They usually
have a significant impact on the choice of modeling techniques.

Although it is not the intention of this chapter to fully describe a data warehouse
modeling approach, we do want to contribute to the establishment of a realistic
and well-structured data warehouse modeling approach. In the next section, we
present a survey of the most important techniques that should somehow be
incorporated in an overall modeling approach. At the end of this chapter, we
bring the different elements of the ″modeling puzzle″ together and consider how
to set up a data warehouse modeling approach.

Chapter 8. Data Warehouse Modeling Techniques 85

8.2 Principal Data Warehouse Modeling Techniques
Listed below are the principal modeling techniques (beyond what can be
considered ″traditional″ database modeling techniques, such as ER modeling
and normalization techniques) that should be arranged into an overall data
warehouse modeling approach.

 1. Dimensional data modeling
 2. Temporal data modeling
 3. Techniques for building generic and reusable data models (sometimes

referred to as pattern-oriented data modeling). These techniques are much
more extensively and frequently considered in the context of software
development. Data warehouse modelers should learn to apply some of
these techniques, although a transposition from a software development
context to a data warehouse development context may not always be
obvious.

 4. Data architecture modeling consists of a combination of top-down enterprise
data modeling techniques and bottom-up (detailed) model integration. Data
architecture modeling also should provide the techniques for logical data
partitioning, granularity modeling, and building multitiered data
architectures.

Other modeling techniques may have to be added to the overall approach. If, for
example, the data warehouse also incorporates multimedia data types such as
documents and images or if end-users are involved in other types of
informational applications than dimensional data analysis.

To keep the scope and complexity of this chapter within realistic boundaries, we
concentrate our attention on dimensional data modeling and temporal data
modeling. We present the base techniques for dimensional and temporal data
modeling, and, in the course of the discussion, we comment on techniques for
building generic and reusable data models. Be aware that much more can be
said about dimensional and temporal data modeling than what we say in this
chapter and that we only scratch the surface of the techniques and approaches
for building generic and reusable data models.

Data architecture modeling and advanced modeling techniques such as those
suitable for multimedia databases and statistical databases are beyond the
scope of this chapter (and as a matter of fact, beyond the scope of this book).

8.3 Data Warehouse Modeling for Data Marts
Data marts can loosely be defined as data warehouses with a narrower scope of
use. Data marts are focused on a particular data analysis business problem or
on departmental information requirements (Figure 39 on page 87 illustrates
this).

86 Data Modeling Techniques for Data Warehousing

Figure 39. Data Marts.

Some of the complexities inherent in data warehouses are usually not present in
data-mart-oriented projects. Techniques and approaches for data mart
development are somewhat different from those applied for data warehouse
development. Data architecture modeling, for instance, which is a crucial
technique for data warehouse development, is far less required for data marts.

The complexities of data warehousing usually make data mart development, and
modeling in particular, appear to be less complicated and time consuming. In
reality, this is true. But you should refrain from concluding that data mart
development is by definition simple and easy going. We have seen many cases
of data mart solutions based on quick and dirty development using an OLAP tool
that end users and the data mart administrator apparently thought was good for
the information analysis that had to be performed. Such solutions usually do not
last very long. Thus, we advocate that in data mart development a high level of
attention be given to proper data modeling.

Modeling for the data mart has to be more end-user focused than modeling for a
data warehouse. End users must be involved in the data mart modeling process,
as they obviously are the ones who will use the data mart. Because you should
expect that end users are not at all familiar with complex data models, the
modeling techniques and the modeling process as a whole should be organized
such that complexity is transparent to end users.

This chapter has a significant focus on dimensional data modeling. As a matter
of fact, dimensional data modeling is a powerful data modeling technique for
data mart development. When the data mart is developed to support a
dimensional data analysis business problem (such as when users perform OLAP
activities using the information in the data mart), dimensional data modeling is
by far advisable as the modeling technique to use. The dimensional modeling
techniques presented in this chapter therefore are also suitable for those who
are primarily interested in a narrower scope of the work of data warehouse
modeling, that is, those who are interested in developing data models for data
marts. We use the term data warehouse modeling throughout the chapter,
however, whether the modeling is done in the context of a data warehouse or in

Chapter 8. Data Warehouse Modeling Techniques 87

the context of a data mart. Where relevant distinctions between data warehouse
and data mart modeling are present, we indicate this in the text.

You should not conclude from the above that we advocate dimensional modeling
for data warehouses. The suitability of dimensional modeling for producing data
models with a very large scope of coverage is intensely debated among today ′s
experts. At the end of the chapter, after all the techniques for data warehouse
modeling have been presented, we will be in a better position to evaluate that
ongoing discussion.

8.4 Dimensional Modeling
The approach to dimensional modeling developed in this chapter is summarized
in Figure 40 on page 89. The focus of our discussion will primarily be on data
modeling requirements. In subsequent sections of this chapter, the various
steps in the dimensional modeling process are investigated in more detail.

A debate raging in the data warehouse modeling world today is that between
traditionalists who promote ER modeling and third normal form as the only good
modeling approach for data warehouse modeling, and those who proclaim that
ER models are unusable for data warehouse modeling because they are too
technical and too complex for end users. For these modeling experts,
dimensional modeling provides ″salvation,″ the promised land of dimensional
modeling being, primarily, the techniques that produce flattened dimensional
models (star models, as opposed to snowflake models, that show the structure of
the dimension hierarchies in the dimensional model).

We try to stay out of this debate as much as possible, although staying out of it
completely is impossible.

In this chapter, we emphasize that models should be produced that represent
the problem domain as directly as possible. Technical considerations and
design techniques should be introduced only when the (conceptual) model is
complete.

88 Data Modeling Techniques for Data Warehousing

Figure 40. Dimensional Model ing Activities.

The following list introduces the requirements topics, which are discussed in
more detail in subsequent sections of this chapter.

• Requirements Gathering . During requirements gathering, end-user
requirements are collected and documented. Requirements gathering is
often incorporated in some way into studies of the business processes and
information analysis activities in which end users are involved.
Requirements gathering therefore is very much oriented toward
understanding the problem domain for which the modeling will be done.
Usually, end-user requirements at this stage are documented rather
informally or at least they are not represented in detailed schemas.
Techniques for requirements gathering include very traditional techniques
such as interviews with end users, study of existing documents and reports,
and monitoring the ongoing information analysis activities. Experience with
business process engineering and information analysis in itself usually
contributes significantly in this stage. The results of requirements gathering
are used as the basis for producing the dimensional models.

• Requirements Analysis . During requirements analysis, informal end-user
requirements are further investigated, and initial dimensional models are
produced showing facts, measures, dimension keys, and dimension
hierarchies. Dimension hierarchies can include parallel hierarchical paths.
Models produced during requirements analysis must be kept simple,
because these initial dimensional models must be discussed with end users.
Figure 41 on page 90 shows a sample schematic notation technique that can
be used for requirements analysis. A schema like that in Figure 41 on
page 90 is what we will call the initial dimensional model of the problem
domain.

Chapter 8. Data Warehouse Modeling Techniques 89

Figure 41. Schematic Notation Technique for Requirements Analysis.

The activities that are part of requirements analysis are illustrated in
Figure 42. While the initial dimensional models are being produced, the
business directory definitions for facts, measures, and dimensions and all
other elements in the model should be established. These definitions are
the core of the business metadata that end users need when using the data
warehouse for their information analysis activities.

Figure 42. Requirements Analysis Activities.

• Requirements Validation . Initial dimensional models are used in the process
of validating the end-user requirements and for assessing the scope and
impact of the development project. These activities are schematically
summarized in Figure 43 on page 91.

90 Data Modeling Techniques for Data Warehousing

Figure 43. Requirements Validation.

• Requirements Modeling . Validated initial models are further developed into
detailed dimensional models, showing all elements of the model and their
properties. Detailed dimensional models can further be extended and
optimized. Many techniques in this area should be thought of as advanced
modeling techniques. Not every project requires all of them to be applied.
We cover some of the more commonly applied techniques and indicate what
other issues may have to be addressed. The major activities that are part of
requirements modeling are illustrated in Figure 44.

Figure 44. Requirements Modeling.

When advanced dimensional modeling techniques are used such as the ones
indicated in Figure 44, the dimensional model usually tends to become
complex and dense. This may cause problems for end users. To solve this,
consider building two-tiered data models, in which the back-end tier
comprises all of the model artifacts and the full structure of the model,

Chapter 8. Data Warehouse Modeling Techniques 91

whereas the front-end tier (the part of the model with which the end user is
dealing directly) is a derivation of the entire model, made simple enough for
end users to use in their data analysis activities. Two-tier data modeling is
not required as such. If end users can fully understand the dimensional
model, the additional work of constructing the two tiers of the model should
not be done.

• Design, Construction, Validation, and Integration . Once requirements are
modeled, possibly in a two-tiered dimensional model, design and
construction activities are to be performed. These will further extend and
possibly even change the models produced in the previous stages of the
work, to make the resulting solution implementable in the software
infrastructure of the data warehouse environment. Also, a functional
validation of the proposed solution must be performed, together with the end
users. This usually results in end users using the constructed solution for a
while, giving them the opportunity to work with the information that has been
made available to them in a local solution (perhaps in a data mart). In
addition, the local solution may then be integrated into a more global data
warehouse architecture, including the model of the data produced.

We attach particular importance to clearly separating modeling from design.
Good modeling practice focuses on the essence of the problem domain.
Modeling addresses the ″what″ question. Design addresses the question of
″how″ the model representing reality has to be prepared for implementing it
in a given computing environment.

The separation between modeling and design is of significant importance for
data warehouse modeling. Unfortunately though, all too often modeling
issues are mixed with design issues, and, as a consequence, end users are
confronted with the results of what typically are design techniques. Because
modeling is not always already separated from design, many data
warehouse models have a technical outlook.

Neglecting a clear separation between modeling and design also results in
models that are closely linked with the computing environment in general
and with tools in particular. Thus it is difficult to integrate the models with
others and adapt and expand them. Keep in mind that a data warehouse and
data warehouse models are very long lasting.

Each of the requirements steps in the dimensional modeling process are now
discussed in more detail. The design, construction, validation, and integration
steps are discussed within the context of the dimensional modeling
requirements.

8.4.1 Requirements Gathering
End-user requirements suitable for a data warehouse modeling project can be
classified in two major categories (see Figure 45 on page 93): process-oriented
requirements , which represent the major information processing elements that
end users are performing or would like to perform against the data warehouse
being developed, and information oriented requirements , which represent the
major information categories and data items that end users require for their data
analysis activities.

Typically, requirements can be captured that belong to either or both of these
categories. The types of requirements that will be available and the degree of
precision with which the requirements will be stated (or can be stated) often
depend on two factors: the type of information analysis problem being

92 Data Modeling Techniques for Data Warehousing

considered for the data warehouse implementation project, and the ability of end
users to express their information needs and the scenarios and strategies they
use in their information analysis activities.

Figure 45. Categories of (Informal) End-User Requirements.

8.4.1.1 Process Oriented Requirements
Several types of process-oriented requirements may be available:

• Business objectives

Business objectives are high-level expressions of information analysis
objectives, expressed in business terms. One or more business objectives
can be specified for a given data warehouse implementation project.

As an example, in the CelDial case study (see Appendix A, “The CelDial
Case Study” on page 163), the business objectives could be stated as:

− ″The data warehouse has to support the analysis of manufacturing costs
and sales revenue of products manufactured and sold by CelDial.″

The combined business objectives can be used in the data warehouse
implementation project as indicators of the scope of the project. They
can also be used to identify information subject areas involved in the
project and as a means to identify (usually high-level) measures of the
business processes the end user is analyzing. In the CelDial example,
the apparent information subject areas are Products and Sales. The
objectives indicate that the global measures used in the information
analysis process are ″manufacturing cost″ and ″sales revenue.″ Notice
that these high-level measures ″hide″ a substantial requirement in terms
of detailed data to calculate them.

• Business queries

Business queries represent the queries, hypotheses, and analytical
questions that end users issue and try to resolve in the course of their
information analysis activities. Just as with business objectives, business
queries are expressed in business terms. You should expect that they are

Chapter 8. Data Warehouse Modeling Techniques 93

usually not precisely formulated. They are certainly not expressed in terms
of SQL.

Examples of frequently encountered categories of business queries are:

− Existence checking queries, such as ″Has a given product been sold to a
particular customer?″

− Item comparison queries, such as ″Compare the value of purchases of
two customers over the last six months,″ or ″Compare the number of
items sold for a given product category, per store, and per week.″

− Trend analysis queries, such as ″What is the growth in item sales for a
given set of products, over the last 12 months?″

− Queries to analyze ratios, rankings, and clusters, such as ″Rank our best
customers in terms of dollar sales over the last year.″

− Statistical analysis queries, such as ″Calculate the average item sales
per product category, per sales region.″

For the CelDial case study, several business queries were identified. For the
sake of this chapter, we selected three of them to use for illustration:

• (Q1) What is the average quantity on hand this month, for each product
model in each manufacturing plant?

• (Q2) What is the total cost and revenue for each model sold today,
summarized by outlet, outlet type, region, and corporate sales levels?

• (Q3) What is the total cost and revenue for each model sold today,
summarized by manufacturing plant and region?

For a complete description of the CelDial case study, see Appendix A, “The
CelDial Case Study” on page 163 and the description of the modeling process in
Chapter 7.

• Data analysis scenarios

Data analysis scenarios are a good way of adding substance to the set of
requirements being captured and analyzed. Unfortunately, they are more
difficult to obtain than other processing requirements and thus are not
always available for requirements analysis.

Essentially two types of data analysis scenarios are of interest for data
warehouse modeling:
− Query workflow scenarios: These scenarios represent sequences of

business queries that end users perform as part of their information
analysis activities. Query workflow scenarios can significantly help
create a better understanding of the information analysis process.

− Knowledge inference strategies : These end-user requirements
acknowledge the fact that activities performed by end users of a data
warehouse have expert system characteristics. As with query workflow
scenarios, these strategies can provide more understanding of the
activities performed by end users. The simplest forms of knowledge
inference strategies are those that show how users roll up and drill down
along dimension hierarchies.

Whether or not these end-user requirements will be available depends
on the capabilities of end users to express how they get to an answer or
find a solution for their problems as well as on the type of data
warehouse application that is being considered for the modeling project.

94 Data Modeling Techniques for Data Warehousing

8.4.1.2 Information-Oriented Requirements
Information-oriented requirements capture an initial perception of the kinds of
information end users use in their information analysis activities. There are
different categories of information-oriented requirements that may be of interest
for the requirements analysis and data warehouse modeling process:

• Information subject areas

Information subject areas are high-level categories of business information.
Information subject areas usually are used to build the high-level enterprise
data model. When available, information subject areas indicate the scope of
the data warehouse project. They also contribute to the requirements
analyst′s ability to relate the data warehouse project with other (already
developed) parts of the data warehouse or to data marts.

For the CelDial case study, the information subject areas of interest are:
Products, Sales (including Sales Organization), and Manufacturing (including
Inventories). Whether or not the Customers information subject area is present
in the scope of the CelDial case study is debatable. Although customer sales
are involved, there is no apparent substantial requirement that indicates that the
Customers subject area should also be included in the project. In addition, if
retail outlets within the Sales Organization also hold inventories of products they
may sell, then most probably Inventories should become an information subject
area in its own right rather than be incorporated in Manufacturing. Debates such
as these are typical when trying to establish the information subject areas
involved in a data warehouse development project.

• High-level data models, ER and/or dimensional models

Several data models may be available and could be used to further specify
or support end-user requirements. They can be available as high-level
enterprise data models, ER models, or dimensional models. The ER models
may be collected by reengineering and integrating source data models.
Dimensional models may be the result of previous dimensional data
warehouse modeling projects.

Figure 46 on page 96 illustrates the relationships among the various data
models in the data warehouse modeling process.

In user-driven modeling approaches, source data models are used as aids in
the process of fully developing the data warehouse model.

Source data models may have to be constructed by using reverse
engineering techniques that develop ER models from existing source
databases. Several of these models may first have to be integrated into a
global model representing the sources in a logically integrated way.

Chapter 8. Data Warehouse Modeling Techniques 95

Figure 46. Data Models in the Data Warehouse Model ing Process.

8.4.2 Requirements Analysis
Requirements analysis techniques are used to build an initial dimensional model
that represents the end-user requirements captured previously in an informal
way. The requirements analysis produces a schematic representation of a
model that information analysts can interpret directly. The results of
requirements analysis will be the primary input for data warehouse modeling
once they have passed the requirements validation phase.

The scope of work of requirements analysis can be summarized as follows:

• Determine candidate measures, facts, and dimensions, including the
dimension hierarchies.

• Determine granularities.
• Build the initial dimensional model.
• Establish the business directory for the elements in the model.

Figure 47 on page 97 summarizes the context in which initial dimensional
modeling is performed and the kinds of deliverables that are produced.

96 Data Modeling Techniques for Data Warehousing

Figure 47. Overview of Initial Dimensional Modeling.

Figure 48 illustrates a notation technique that can be used to schematically
document the initial dimensional model. It shows facts (or fact tables, if you
prefer) with the measures they represent and the dimension hierarchies or
aggregation paths associated with the facts. Dimension hierarchies are
represented as arrows showing intermediary aggregation points. The
dimensions may include alternate or parallel dimension hierarchies. Dimension
hierarchies are given names drawn from the problem domain of the information
analyst. These initial dimensional models also formally state the lowest level of
detail—the granularity—of each dimension. An initial dimensional model consists
of one or more such schemas.

Figure 48. Notation Technique for Schematically Documenting Init ial Dimensional
Models.

Chapter 8. Data Warehouse Modeling Techniques 97

8.4.2.1 Determining Candidate Measures, Dimensions, and Facts
To build an initial dimensional model, the following base elements have to be
identified and arranged in the model:

• Measures
• Dimensions and dimension hierarchies
• Facts

Several approaches can be used to determine the base elements of a
dimensional model. In reality, analysts combine the use of several of the
approaches to find appropriate candidate elements for the model and integrate
their findings in an initial dimensional model, which then combines several
different views on reality. Because the requirements analysis process is
nonlinear and knowing that inherent relationships exist between the candidate
elements, it does not really matter which approach is used, as long as the
process is performed with a clear perspective on the business problem domain.

The approaches essentially differ in the sequence with which they identify the
modeling elements. Some of the most common approaches are:

• Determine measures first, then dimensions associated with measures, then
facts

This approach could be called the query-oriented approach because it is the
approach that flows naturally when the requirements analyst picks up the
end-user queries as the first source of inspiration. Chapter 7, “The Process
of Data Warehousing” on page 49 and the case study in Appendix A, “The
CelDial Case Study” on page 163 were developed by using this approach.

• Determine facts, then dimensions, then measures

This approach is a business-oriented approach. Typically, it tries to
determine first the fundamental elements of the business problem domain
(facts and measures) and only then are the details required by the end users
developed in it. This chapter shows how this approach can be used to
compensate the strict end-user-oriented view when trying to develop more
fundamental and longer lasting models for the problem domain.

• Determine dimensions, then measures, then facts

This approach frequently is used when the source data models are being
used as the basis for determining candidate elements for the initial
dimensional model. We refer to it as the data-source-oriented approach.

Notice that facts, dimensions, and measures determined during this stage are
candidate elements only. Some of them may later disappear from the model, be
replaced by or merged with others, be split in two or more, or even change their
″nature.″

Candidate Measures: Candidate measures can be recognized by analyzing the
business queries. Candidate measures essentially correspond to data items that
the users use in their queries to measure the performance or behavior of a
business process or a business object.

For the CelDial project, the following candidate measures are present in Q1, Q2
and Q3:

• Average quantity on hand
• Total Cost
• Total Revenue

98 Data Modeling Techniques for Data Warehousing

For a complete list of measures, refer to Chapter 7, “The Process of Data
Warehousing” on page 49 and Appendix A, “The CelDial Case Study” on
page 163.

Determining candidate measures requires smart, not mechanical, analysis of the
business queries. Good candidate measures are numeric and are usually
involved in aggregation calculations, but not every numeric attribute is a
candidate measure. Also, candidate measures identified from the available
queries may have peculiar properties that do not really make them ″good″
measures. We investigate some properties of measures later in this chapter and
indicate how they may affect the model.

Measure Granularities within a Dimensional Model . The granularity of a measure
can be defined intuitively as the lowest level of detail used for recording the
measure in the dimensional model. For instance, Average Quantity On Hand
can be considered to be present in the model per day or per month. Average
Quantity On Hand could also be considered at the level of detail of product or
perhaps at product category level or packaging unit.

Measures are usually associated with several dimensions. The granularity of a
measure is determined by the combination of the recording details of all of its
dimensions.

Different measures can have identical granularities. Because both Total Cost
and Total Revenue seem to be associated with sales transactions in the CelDial
case, they have identical granularities. We show next that measures with
identical granularities are candidates for being part of another element of the
dimensional model: the fact.

Determining the right granularities of measures in the data warehouse model is
of extreme importance. It basically determines the depth at which end users will
be able to perform information analysis using the data warehouse or the data
mart. For data warehouses, the granularity situation is even more complex.
Fine granular recording of data in the data warehouse model supports fine
detailed analysis of information in the warehouse, but it also increases the
volume of data that will be recorded in the data warehouse and therefore has
great impact on the size of the data warehouse and the performance and
resource consumption of end-user activities. As a base guideline, however, we
advocate building initial dimensional models with the finest possible
granularities.

Candidate Dimensions: Measures require dimensions for their interpretation.
For example, average quantity on hand requires that we know with which
product, inventory location (manufacturing plant), and period of time (which day
or month) the value is associated. Average quantity on hand for CelDial
therefore is to be associated with three dimensions: Product, Manufacturing, and
Time. Likewise, Total Revenue analyzed in Query Q2 requires Sales (shorthand
for Sales Organization), Product, and Time as dimensions, whereas for Query
Q3, the dimensions are Manufacturing, Product, and Time.

Dimensions are ″the coordinates″ against which measures have to be
interpreted. Analyzing the query context in which candidate measures are
specified results in identifying candidate dimensions for each of the measures,
within the given query context. Notice that this happens ″per measure″ and ″per
query.″ One of the next steps involves the consolidation of candidate measures
and their dimensions across all queries.

Chapter 8. Data Warehouse Modeling Techniques 99

For CelDial, four candidate dimensions can thus be identified at this time:
Product, Sales Organization, Manufacturing, and Time. The associations
between candidate measures and dimensions, for each of the business query
contexts of the CelDial case study, are documented in Chapter 7, “The Process
of Data Warehousing” on page 49 and Appendix A, “The CelDial Case Study” on
page 163.

A more generic and usually more interesting approach for identifying candidate
dimensions consists of investigating the fundamental properties of candidate
measures, within the context of the business processes and business rules
themselves. In this way, dimensions can be identified in a much more
fundamental way. Determining candidate dimensions from the context of given
business queries should be used as an aid in determining the fundamental
dimensions of the problem domain.

As an example, Sales revenue is inherently linked with Sales transactions, which
must, within the CelDial business context, be associated with a combination of
Product, Sales Organization, Manufacturing and Time. Because Sales
transaction also involves a customer (for CelDial, this can be either a corporate
customer or an anonymous customer buying ″off the counter″), we may decide to
add Customer as another dimension associated with the sales revenue measure.

Candidate Facts: In principle, measures together with their dimensions make up
facts of a dimensional model.

Two facts can be identified in the CelDial case: Sales and Inventory. The
obvious interpretation of the fact that is manipulated in Q1 is that of an inventory
record, providing the Average Quantity On Hand per product model, at a given
manufacturing plant (the inventory location) during a period of time (a day or a
month). For this reason, we call it the inventory fact. Given values for all three
dimensions, for instance, a model, a manufacturing plant, and a time period, the
existence of a corresponding Inventory fact can be established, and, if it exists, it
gives us the value of the corresponding Average Quantity On Hand. The fact
manipulated in Q2 and Q3 is called Sales. It incorporates two measures, Total
Cost and Total Revenue. Both measures are dependent on the same
dimensions.

Semantic Properties of Business-Related Facts . Facts are core elements of a
dimensional model. A representative choice of facts, corresponding to a given
problem domain, can be an enabler for a profound analysis of the business area
the end user is dealing with, even beyond what is requested and expected (and
what is consequently expressed in the end-user requirements). A choice of
representative, business-related facts can also support the extension of the use
of the data warehouse model to other end-user problem domains. Identifying
candidate facts through the process of consolidating candidate measures and
dimensions is a viable approach but may lead to facts with a ″technical″ nature.
We recommend that candidate facts be identified with a clear business
perspective.

Facts can indeed represent several fundamental ″things″ related to the business:

• A fact can represent a business transaction or a business event (Example: a
Sale, representing what was bought, where and when the sale took place,
who bought the item, how much was paid for the item sold, possible
discounts involved in the sale, etc.).

100 Data Modeling Techniques for Data Warehousing

• A fact can represent the state of a given business object (Example: the
Inventory state, representing what is stored where and how much of it was
stored during a given period).

• A fact can also represent changes to the state of a given business object
(Example: Inventory changes, representing item movements from one
inventory to another and the amount involved in the move, etc.).

Guidelines for Selecting Business-Related Facts . Now we further explore the
specific characteristics of these types of business-related facts and how they can
be used in dimensional modeling. We recommend that you apply the following
guidelines for identifying representative, business-related facts:

• Guideline 1: Each fact should have a real-world business equivalent.

• Guideline 2: Focus on determining business-related facts that represent
either:

− Business transactions or business events

or

− Business objects whose state is of interest for the information analyst

or

− Business objects whose state changes are of interest for the information
analyst

Whether or not a state model or a state change model (or both) will be
used to represent facts in the dimensional model depends on the
interests of the information analyst.

• Guideline 3: Each fact should be uniquely identifiable, merely by the
existence of its real-life equivalent.

• Guideline 4: The granularity of the base dimensions of each fact should be as
fine-grained as possible.

These guidelines can be used either to drive the dimensional modeling process
or to assess and enhance an initial dimensional model, developed on the basis
of business query analysis.

Facts Representing Business Transactions or Business Events . A Sale is an
example of a fact representing a business transaction or a business event. If we
want to analyze its ″performance,″ measures like Total Cost and Total Revenue
have to be associated with it. Clearly, such facts represent ″something that
happened which is of interest to the analyst.″ A transaction or an event can
belong to the business itself, or it can be an outside transaction or event.

Identifying candidate facts using business-related techniques usually results in
the identification of additional measures (see Figure 49 on page 102). As an
example, if the Sales fact is identified as the thing that represents Sale
transactions, Quantity Sold will almost naturally be added as a fundamental
measure.

Differentiating a fact that represents a business transaction from a fact that
represents an event can be somewhat obscure. Let ′s consider the Sales fact, for
instance. Business transactions are supposed to ″make changes happen″ in the
business environment. In OLTP applications, transactions associated with
business transactions apply changes to the database that correspond to changes
in the business environment. We usually want to know the effects of these

Chapter 8. Data Warehouse Modeling Techniques 101

changes and therefore we want to be able to measure the effects of the business
transaction. This is why facts that represent business transactions have
measures associated with them.

If, however, we are only interested in knowing if and when a Sale happened, we
would keep record of Sale as a business event rather than a business
transaction. Usually, for facts that represent business events, no record is kept
of any measures. For the Sales fact, this would imply that we would only be able
to identify the Sale as something that happened at a certain moment in time,
involving a product, an outlet, and a manufacturing plant (or inventory location).
Facts that are associated with business events are sometimes called factless
facts (a term used in The Data Warehouse Toolkit by Ralph Kimball) although
with our terminology, it would be better to call them measureless facts.

Figure 49. Facts Representing Business Transactions and Events.

Facts Representing the State of Business Objects . The Inventory fact is an
example of a business-related fact. It represents the state of the business object
″Inventory,″ which is associated with a product, a manufacturing plant, and a
period of time. The state of the Inventory business object is represented here by
the measure Average Quantity on Hand.

Notice that the time dimension of the Inventory fact is a duration or a time-period
in this case. Measures of the Inventory fact (Quantity on Hand or any other
measure associated with this Inventory fact) must represent the state of the
particular inventory, during that time period (see Figure 50 on page 103).

The careful reader may at this point have spotted a potential problem: how
suitable is the Inventory fact for what end users really want to analyze. Although
Inventory very directly represents some of the end-user requirements we are
analyzing (notice, we oversimplify the whole situation for the sake of a clear
explanation), it does not provide a good solution for analyzing the state of
Inventory business objects. One of the basic problems is the time dimension
being a duration: if the duration is relatively long with respect to the frequency

102 Data Modeling Techniques for Data Warehousing

with which the Inventory state changes, the Average Quantity On Hand in the
Inventory fact is not a very representative measure.

To solve this problem, there are basically three solutions. Either we keep the
granularity of the time dimension as it is and add some more measures that give
a better (statistical) representation of the Inventory state: We could add Minimum
Quantity on Hand, Maximum Quantity on Hand, etc. to try to compensate for the
lack of preciseness of Quantity on Hand during the recorded time period. This is
not an elegant solution, but it may be the only solution available.

A better solution would be to increase the granularity of our Inventory fact by
reducing the representative time duration in the fact: Rather than keep a record
of the Inventory state once per month, we could choose to register it per day. In
this case, we can basically work with the same measures as before, but we now
interpret them on a daily basis rather than monthly. If we decide to solve the
problem with the Inventory fact in this way, we obviously have to assess whether
the source databases and the data warehouse populating subsystem can support
this solution.

Figure 50. Inventory Fact Representing the Inventory State.

A third solution to this problem consists of changing the semantics of the
Inventory fact, from representing the Inventory state to Inventory state changes.

Facts Representing Changes to the State of Business Objects . If we further
investigate the representativity of Average Quantity On Hand for the Inventory
business object, increasing the time dimension granularity from, say, a month to
a day, we may still have a fundamental problem if Quantity on Hand really
changes frequently. By increasing the granularity of the time dimension for
state-related facts, we can assume that the representativity problem of the
measures becomes less severe but may not disappear entirely (see Figure 51
on page 104).

If we want to provide information analysts with a solution for fine-grained
analysis of the behavior of business objects like Inventory, we have to change
the semantic interpretation of the fact. For the Inventory Fact, for instance, we
have to capture the Inventory state changes in our dimensional model.

Chapter 8. Data Warehouse Modeling Techniques 103

In reality, it usually is difficult to decide whether a state model or a state change
model for a business object is to be preferred. Some users may have to work
predominantly with states, others with state changes, even for facts related to
the same business objects. The essence of the problem is one of time-variancy
modeling, and we deal with this in much more detail in “Modeling Time-Variancy
of the Dimension Hierarchy” on page 137.

Figure 51. Inventory Fact Representing the Inventory State Changes.

To conclude, make sure you are aware of the fundamental differences between
both solutions for modeling facts related to business objects. The Inventory
state model and the Inventory state change model in both solutions may carry
the same names (although we do not recommend doing this), but the facts they
represent clearly are totally different: one says how much we had in stock for a
certain product during a given period of time, the other would say how the stock
changed, for a certain product, over time. Also, the time dimension for both is
fundamentally different. In the state model, the time dimension must be
interpreted as a duration. In the state change model, the time dimension must
be interpreted as a ″time stamp″ rather than a duration. It is clear that the users
must be made fully aware of this, which stresses the importance of business
metadata.

Business-Related Requirements Analysis . In the previous sections, we have
seen several examples of situations where requirements analysis and initial
dimensional modeling done from a business-related perspective result in better
solutions than if the work is done strictly from the analysis of available end-user
requirements.

Requirements analysis based on captured end-user requirements should be
considered as an aid in the process. If well done, it will lead to a solution that
addresses the end users′ perceptions of the work they do and consequently
works in practice. You must expect, however, that such solutions will have a
narrow scope of coverage of the business problem domain and therefore not last
very long. As a general guideline, we recommend performing business-related
requirements analysis and initial dimensional modeling.

104 Data Modeling Techniques for Data Warehousing

Because of the straightforward semantics which can be associated with
measures, dimensions, and facts in a dimensional model, some dimensional
modelers prefer to identify facts before anything else in the model. They look for
″things″ (business objects, transactions, and events) that are of fundamental
importance for the business process they want to analyze. This ″gives″ them the
candidate facts. Likewise, identifying the elements that identify the facts provides
them with the candidate dimensions. Candidate measures can be identified
based a study of what has to be tracked, sized, evaluated, etc. about these
facts. If the general business context is well understood, business-related
requirements analysis results in the creation of very representative initial
dimensional models.

8.4.2.2 Creating the Initial Dimensional Model
With the candidate measures, dimensions, and facts, an initial dimensional
model can be built. Figure 52 presents two such initial models, one for the
Sales fact and one for the Inventory fact for the CelDial case study.

Experience has shown that most information analysts can fully understand these
schemas, even though they represent structured dimension hierarchies in the
model. We use such schemas for representing the initial model and discuss the
potential usage of measures present in the model along the dimension paths,
directly with the end users. In addition, these initial dimensional models are also
sufficiently detailed for the modeling expert who subsequently has to develop the
fully detailed dimensional models for the problem domain at hand.

Figure 52. Initial Dimensional Models for Sales and Inventory.

Establishing the Business Directory: As part of the process of constructing the
initial dimensional model, the base elements that make up a model and are
directly related to the end-user′s information analysis activities must be defined
and described in what we call the business directory. The elements of the
dimensional model are indeed core information items and their business
definition should be established as precisely as possible.

Chapter 8. Data Warehouse Modeling Techniques 105

We recommend that the business directory for the (new) elements of the
dimensional model be created while the model is constructed because it is
during the initial model construction that the elements are determined from
among the set of end-user requirements. Unclear assumptions made about the
meaning of candidate elements can put requirements analysis on the wrong
track. Spelling out clear and precise definitions of the base elements will help
produce an initial model that better represents the fundamentals of the business
problem domain.

The base elements of the model must be defined in business terms. Each of the
items is given a name and a definition statement of what it really represents.
End users are actively involved in this process. They can either help write the
definitions or validate them.

We recommend that this activity be performed rigorously. It is not a simple task
to write precise definitions. Perhaps existing business dictionaries can help, if
their definitions are up to date. Make sure, however, that the meaning of the
modeling element is captured in these definitions, as the end users would define
them.

These business directory definitions are the prime business metadata elements
associated with the initial dimensional model. They will become part of the
business metadata dictionary for the data warehouse. End users will use these
definitions in their information analysis activities, to explore what is available in
the data warehouse and interpret the results of their information analysis
activities.

Determining Facts and Dimension Keys: One of the guidelines stated in
“Candidate Facts” on page 100 says that facts should be uniquely identifiable
merely by the existence of their real-life equivalent. Whether or not this implies
that facts in fact tables should have a unique identifier is a debatable issue.
Especially for transaction and event-related facts, it is not clear that nonunique
facts in the fact table are really harmful.

Determining Facts . For facts that relate to states of business objects, the need to
be able to uniquely identify the business object′s state at a particular point in
time is more of an issue. For such facts, a unique identifier of the objects and
their state is required. Good modeling practice then suggests that this guideline
should be applied to all facts in a dimensional model, whatever they represent.

There are several ways of identifying facts uniquely. The most straightforward
way is through combining their base dimensions: The Inventory fact in the
CelDial model is identifiable naturally through combining a product, a
manufacturing plant, and a period of time (for instance a particular day or
month). Notice that the presence of a time period or time duration in a fact′s
identification can lead to an awkward looking ″key″ when the time period is a
less obvious period than day or month. This is for instance the case when time
periods are used that are determined by a begin- and end-time, a technique for
modeling state changes that can occur at any point in time and last for a period
that is essentially of varying length. Because we can assume that in such cases
no two facts related to the same business object could occur or should be
registered with the same begin-time, we can use the begin-time as one of the
elements to uniquely identify the facts.

Identifying facts using their base dimensions is interesting from another
perspective. Analyzing the facts in a dimensional model from the perspective of

106 Data Modeling Techniques for Data Warehousing

their identifying dimensions can further clarify issues about the granularity of
facts. Two examples can illustrate this:

• Example 1 : If the inventory state fact is identified through the product model
identifier, in combination with an identifier for the manufacturing plant at
which the inventory resides, it is clear that the model cannot provide support
for investigating inventorization of product components (which are of a lower
granularity than product models) and cannot be used to analyze inventories
within manufacturing plants (there may be several inventory locations in
each of the plants). Figure 53 shows an example of an inventory state fact
with lower level granularities for the Product and Plant dimensions.

Figure 53. Inventory State Fact at Product Component and Inventory Location
Granularity.

• Example 2 : If an Inventory state change fact were used in the dimensional
model and if the time dimension of the Inventory fact were used at the
granularity of a day, there is no guarantee that all facts in the Inventory fact
table would be unique: Several inventory changes can indeed occur, for a
given Product Model in a given Plant, during a particular day. To solve this
situation, the model could for instance add the Inventory Movement
Transaction dimension key to the Inventory fact (see Figure 54 on page 108).
This dimension key can have several different forms: It can be associated
with a business document number, possibly combined with the location of
the inventory where the move is to take place, or it can be a system or
technical attribute that makes the fact unique (e.g., a microsecond time
stamp that represents the time when the inventory change takes place,
possibly combined with the inventory location).

Chapter 8. Data Warehouse Modeling Techniques 107

Figure 54. Inventory State Change Fact Made Unique through Adding the Inventory
Movement Transaction Dimension Key.

Facts are identified through either system-generated keys or composite keys that
consist of their dimension keys, at the lowest granularity level. For facts that
represent transactions, events, or state changes, the system-generated key
could be a transaction identifier or a fine-granular time stamp, possibly
enhanced by adding the source data system identifier to it. For state-oriented
facts, it usually is more difficult to find representative system-generated keys. It
should also be pointed out that system-generated keys for facts can introduce
difficulties for the populating subsystem. Although we cannot eliminate the
technique completely, we do not recommend it, at least not when other
approaches are viable.

To reduce the complexity of the solution, we highly recommend avoiding having
composite dimension keys in the dimensional model.

Determinant Sets of Dimension Keys . Facts in a dimensional model can usually
be identified through different combinations of dimension keys (see Figure 55 on
page 109). This situation occurs quite often. If facts are analyzed by different
groups of end users, each with a different perspective on the analysis problem
domain, more dimension keys will be determined and more combinations of
dimension keys will become possible.

Not all combinations of dimension keys present within a given fact are valid or
even meaningful. Figure 55 on page 109 shows valid and invalid combinations
of dimension keys. Each valid combination of dimension keys for a particular
fact is called a determinant set of dimension keys. Each fact in the model can
have several such determinant sets of dimension keys, and it is good modeling
practice to identify these determinant sets clearly. The user should be informed,
through the business metadata, which sets of determinant dimension keys are
available for each fact.

108 Data Modeling Techniques for Data Warehousing

Figure 55. Determinant Sets of Dimension Keys for the Sales and Inventory Facts for the
CelDial Case.

Determining Representative Dimensions and Detailed Versus Consolidated
Facts: What are representative dimensions? To answer this question, we have
to consider the question at two levels. The base level question is: What are
representative dimensions for the particular end-user requirements we are
considering right now? The second level question is: What are representative
dimensions for facts, knowing that the model we have at a particular point in
time will have to be integrated with other dimensional models, each considering
possibly distinct sets of end-user requirements?

The issues involved in solving the base question can be illustrated by using the
Sales fact in the CelDial case study. According to the business process
description, we (may) have to differentiate between a Corporate Sale and a
Retail Sale. Corporate Sales can either be handled by one of CelDial′s
SalesPersons, or the buying corporation can directly issue the order to an
OrderDesk. Retail Sales fit less well into this Corporate Sales pattern, however.
At first, we may think of having different (detailed or type-specific) facts in our
model, one fact representing corporate Sales and the other Retail Sales. In this
case, we would almost naturally consider two distinct dimensions, too: one for
the Corporate Sales Organization, the other for the Retail Sales Organization
(see Figure 56 on page 110).

Chapter 8. Data Warehouse Modeling Techniques 109

Figure 56. Corporate Sales and Retail Sales Facts and Their Associated Dimensions.

Separating Sales over two detailed facts has several important implications.
One of the prime ones is that this approach does not fit well should someone in
the CelDial organization want to make a consolidated analysis of Sales Revenue,
disregarding the difference between corporate and retail sales. If this indeed
happens frequently, it would be best to merge all Sales facts into a single
consolidated fact table. But once we do that, what do we do with the two
separate dimensions we have: Corporate Sales Organization and Retail Sales
Organization.

There are basically two solutions we could apply (see Figure 57 on page 111):
either we keep the dimensions separate or we merge them into one single
dimension called Sales Organization. In the first case, we have to have a type
indicator in the Sales fact table with which we can determine whether we are
dealing with a Corporate Sale or a Retail Sale. This type indicator is required
because we have to be able to join facts with the correct dimension. In the
second case, we do not need this indicator, but we must make sure that both
dimensions can be happily merged into a single dimension. Determining whether
a Sale is a Corporate or a Retail Sale should be done from information we can
find in the Sales Organization dimension itself. The indicator is not needed for
the join, in this case.

110 Data Modeling Techniques for Data Warehousing

Figure 57. Two Solutions for the Consolidated Sales Fact and How the Dimensions Can
Be Modeled.

In this particular case, the first alternative is the preferred one. It simplifies the
model, and it supports global sales revenue analysis as well as detailed analysis
of corporate sales and retail sales. The choice of solution is obvious in this case
because both dimensions (Corporate Sales Organization and Retail Sales
Organization) have so much in common for CelDial′s business organization.
When investigating modeling of the dimensions in a dimensional model in more
detail, we will see which criteria can be used to assess whether dimensions can
be and should be merged or not and how this could have an impact on
consolidating facts.

Determining a representative set of corporate dimensions is a very important
aspect of dimensional modeling. Integrating several individually developed
dimensional models in a global, shared data mart that not only supports fact
analysis of ″isolated″ groups of end users but also allows for fact-fact analysis
depends on the presence in the model of common dimensions. For readers who
are familiar with the basics of the relational model, this should not be a big
surprise: if you want to join one fact with another, you need a join attribute in
both facts that is drawn from the same domain. In dimensional modeling, this
can be achieved only if facts can be associated with perfectly identical
dimensions.

Dimensions and Their Roles in a Dimensional Model: There is yet another
important aspect related to the choice of dimension keys in facts and dimensions
in a dimensional model. Consider for instance the situation where the Sales fact
has several time dimension keys: Order date, Shipment date, Delivery date, etc.
All of these time dimension keys relate the fact to apparently the same time
dimension. However, this time dimension acts in different roles with respect to
the Sales fact. A similar situation could occur with any other non-time-related
dimension key in a dimensional model

Dimensions that appear several times in different roles are a very common
situation in dimensional models. Although the situation can easily be solved, we

Chapter 8. Data Warehouse Modeling Techniques 111

do have to take it into account in our modeling approach. Dimension keys in fact
tables should be given names that reflect the roles they play for the fact. A
dimension key called Time is therefore not a very good idea. From the examples
presented above, we should provide names for the various time dimensions
such as Order Date, Shipment Date, and Delivery Date (see Figure 58).

Figure 58. Dimension Keys and Their Roles for Facts in Dimensional Models.

Getting the Measures Right: Measures are elements of prime importance for a
dimensional model. During the initial dimensional modeling phase, candidate
measures are determined based on the end-user queries and their requirements
in general. Candidate measures identified in this way may not be the best
possible choices. We strongly suggest that each and every candidate measure
be submitted to a detailed assessment of its representativity and its usefulness
for information analysis purposes.

It is generally recommended that the measures within the dimensional model be
representative from a generic business perspective. Failing to do so will make
models nonintuitive and complicated to handle. Failing to do so also will make
the dimensional model unstable and difficult to extend beyond a pure local
interest.

When investigating the ″quality″ of candidate measures, you should focus on the
following main issues:

• Meaning of each candidate measure: Expressed in business terms, a clear
and precise statement of what the measure actually represents is a vital
piece of metadata that must be made available to end users.

• Granularities of the dimensions of each measure: Although granularities of
dimensions are usually considered at the level of facts, it is important that
measures incorporated within a fact are evaluated against the dimension
keys of that fact. Such an evaluation may reveal that a given measure may
better be incorporated in another fact or that granularities should perhaps be
changed. Particular attention should be paid to analyzing the
meaningfulness of the candidate measures versus the time dimension of the
fact.

• Relationship between each measure and the source data item or items it is
derived from: Although there is no guarantee that source data items are
actually correct representations of business-related items, it is clear that
measures are derived from these source data items and that therefore this
derivation must be identified as clearly and precisely as possible. You may
have to deal with very simple derivations such as when a measure is an
import of a particular source data item. You may also have to deal with
complex derivation formulas, involving several source data items, functional

112 Data Modeling Techniques for Data Warehousing

transformations such as sums, averages or even complex statistical
functions, and many more. This information is of similar if not more
importance than the definition statement that describes the meaning of the
measure in business terms. Unfortunately, this work is seldom done in a
precise way. It is a complex task, especially if complex formulas are
involved. The work usually is further complicated because of replication and
duplication of data items in the source data systems and the lack of a source
data business directory and a precise understanding of the data items in
these systems. Nevertheless, we strongly advocate that this definition work
be done as precisely as possible and that the information is made available
to end users as part of the metadata.

• Use of each measure in the data analysis processes: Measures are used by
end users in calculations that are essential for producing ″meaningful″ data
analysis results. Calculations such as these can be simple such as in these
examples:
 1. Display a list of values of a particular measure, for a selection of facts.

Other calculations can involve complicated formulas.
 2. Assuming products shipped to customers are packaged in cases or

packaging units, to calculate the Quantity Shipped of a given product in
an analytical operation that compares these numbers, for products that
can be packed in different quantities, the formula should in some way
include packaging conversion rules and values. These calculations may
involve a sequence of related calculations.

 3. To calculate the Net Profit of a Sale, we may first have to calculate
several kinds of costs and a Net Invoice Price for the Sale before
calculating the Net Profit.

For a data warehouse modeler, it is essential to capture the fundamental
calculations that are part of the information analysis process and assess their
impact on the dimensional model. Two fundamental questions must be
investigated each time: Can the calculation be performed? In other words, does
the model include all of the data items required for the calculation? And, Can
the calculation be performed efficiently? In this case you are assessing primarily
how easy it is for the analyst to formulate the calculation. If feasible, some
performance aspects associated with the calculations may be assessed here too.

In practice, it is clear that analyzing each and every calculation involving a
particular measure or a set of measures is impossible to do. What we suggest,
however, is that the modeler take the time to analyze the key derivation
formulas of the data analysis processes. The purpose is to find out whether the
candidate measures are correctly defined and incorporated in the model. This
work is obviously heavily influenced by the available end-user requirements,
knowledge of the business process, and the analytical processing that is
performed.

In addition to evaluating the key derivation formulas and how they impact the
dimensional model, building a prototype for the dimensional model is a very
welcome aid for this part of the work. As with any ″learning″ process, the
prototype may be filled up with a sampling of source data and made available to
end users as a ″training set.″

Measures are also heavily involved in the typical OLAP operations: slicing,
rollup, drilldown. Here too, some assessment of the measures involved in these
operations may help improve the model. The ″quality″ analysis of the measures
for these cases is somewhat simpler than the above, though. In fact, a dominant

Chapter 8. Data Warehouse Modeling Techniques 113

question related to all these operations is whether a particular measure is
additive or not, and whether this property is applicable to all of the dimension
keys of the measure or only to some.

Ralph Kimball defines three types of measures (Ralph Kimball, The Data
Warehouse Toolkit):

• Additive : Additive measures can be added across any of their dimensions.
They are the most frequently occurring measures. Examples of additive
measures in the CelDial model are: Total Cost and Total Revenue.

• Semiadditive : Semiadditive measures can be added only across some of
their dimensions. An example in the CelDial model is Average Quantity On
Hand in the Inventory fact, which is not additive across its time dimension.

• Nonadditive : Nonadditive measures cannot be added across any of their
dimensions. Frequently occurring examples of nonadditive dimensions in
dimensional models are ratios.

Semiadditive and nonadditive measures should be modeled differently to make
them (more) additive: otherwise, the end user must be made aware of the
restrictions.

Fact Attributes Other Than Dimension Keys and Measures: So far, our fact
tables have only contained dimension keys and measures. In reality, fact tables
can contain other attributes too. Because fact tables tend to become very large
in terms of the number of facts they contain, we recommend being very selective
when adding attributes. Very specifically, all kinds of descriptive attributes and
labels should be avoided within facts. In reality though, adding one or more
attributes to a base fact can make querying much more easy without causing too
much of an impact on the size of the fact and consequently on the size of the
fact table itself.

Several of the attributes the modeler will want to add to a fact will be derived
attributes. For a data warehouse model, adding derived attributes should not
really be a problem, particularly because the data warehouse is a read-only
environment. When adding derived attributes to a fact, however, the modeler
should understand and assess the impact of adding attributes on the data
warehouse populating subsystem. Usually, adding derived attributes anywhere
in the data warehouse model is a trade-off between making querying easier and
more efficient and the populating process more complicated.

Three types of fact attributes are particularly interesting to consider. They are
illustrated with the CelDial model in Figure 59 on page 115.

114 Data Modeling Techniques for Data Warehousing

Figure 59. Degenerate Keys, Status Tracking Attributes, and Supportive Attributes in the
CelDial Model.

Degenerate keys are equivalent to dimension keys of a fact, with the exception
that there is no other dimension information associated with a degenerate key.
Degenerate keys are used in data analysis processes to group facts together: for
example, in the CelDial model, SalesOrder is represented through the Order
dimension key in the Sales fact.

Status tracking attributes identify different states in which the fact can be found.
Often, status tracking attributes are status indicators or date/time combinations.
Status tracking attributes are used by the information analyst to select or classify
relevant facts. Their appearance in a fact table often is related to the granularity
of the dimensions associated with the fact. For example, in the CelDial model,
the Sales fact may contain status tracking attributes that indicate whether the
Sale is ″Received,″ ″In process,″ or ″Shipped.″ This can either be modeled
using a state attribute or three date/time attributes representing when the sale
was received, being processed or shipped to the customer.

Supportive attributes are added to a fact to make querying more effective.
Supportive attributes are those a modeler has to be particularly careful with,
because there is often no limit to what can be considered as being supportive.
For example, in the CelDial model, Unit Cost in the Sales fact could be
considered a supportive attribute. Other frequently occurring examples of
supportive attributes are key references to other parts in the dimensional model.
These attributes help reduce complex join operations, which end users should
otherwise have to formulate.

8.4.3 Requirements Validation
During requirements validation, the results of requirements analysis are
assessed and validated against the initially captured end-user requirements.
Also as part of requirements validation, candidate data sources on which the
end-user requirements will have to be mapped are identified and inventoried.
Figure 60 on page 116 illustrates the kinds of activities that are part of
requirements validation.

Chapter 8. Data Warehouse Modeling Techniques 115

Figure 60. Requirements Validation Process.

The main activities that have to be performed as part of requirements validation
are:

• Checking of the coherence and completeness of the initial dimensional
models and validation against the given end-user requirements. The initial
models are analyzed with the end users. As a result, more investigations
could be performed by the requirements analyst and the initial models may
be adapted, in an attempt to fix the requirements as they are expressed in
the models, before passing them to the requirements modeling phase.

• Candidate data sources are identified. An inventory of required and
available data sources is established.

• The initial dimensional models, possibly completed with informal end-user
requirements, are mapped to the identified data sources. This is usually a
tedious task. The source data mapping must investigate the following
mapping issues:

− Which source data items are available and which are not? For those that
are not available, should the source applications be extended, can they
perhaps be found using external data sources, or should end users be
informed about their unavailability and as a consequence, should the
coverage of the dimensional model be reduced?

− Are other interesting data items available in the data sources but have
not been requested? Identifying data items that are available but not
requested may reveal interesting other facets of the information analysis
activities and may therefore have significant impact on the content and
structure of the dimensional model being constructed.

− How redundant are the available data sources? Usually, data items are
replicated several times in operational databases. Basically, this is the
result of an application-oriented database development approach that
almost automatically leads to disparate operational data sources in
which lots of data is redundantly copied. Studying redundant sources
involves studying data ownership. This study must identify the prime
copy of the source data items required for the dimensional model.

116 Data Modeling Techniques for Data Warehousing

− Even if the source data items are available, one still has to investigate
whether they can be captured or extracted from the source applications
and at what cost. As part of requirements validation, a high-level
assessment of the feasibility of source data capturing must be done.
Feasibility of data capture is very much influenced by the temporal
aspects of the dimensional model and by the base granularities of facts
and measures in the model.

− To conclude the requirements validation phase, an initial sizing of the
model must be performed. If possible at all, the initial sizing should also
investigate volume and performance aspects related to populating the
data warehouse.

The results of requirements validation must be used to assess the scope and
complexity of the data warehouse development project and to (re-)assess the
business justification of it. Requirements validation must be performed in
collaboration with the end users. Incompleteness or incorrectness of the initial
models should be revealed and corrected. Requirements validation may involve
building a prototype of the dimensional model.

As a result of requirements validation, end-user requirements and end-user
expectations should be confirmed or reestablished. Also as a result of
requirements validation, source data reengineering recommendations may be
identified and evaluated. At the end of requirements validation, a (new)
″sign-off″ for the data warehouse modeling project should be obtained.

8.4.4 Requirements Modeling - CelDial Case Study Example
Requirements modeling consists of several important activities that all are
performed with the intent of producing a detailed conceptual model that
represents at best the problem domain of the information analyst. Figure 61
gives an overview of the major activities that are part of requirements modeling.
Obviously, the project itself determines to what extent each of these activities
should be performed.

Figure 61. Requirements Model ing Activities.

Chapter 8. Data Warehouse Modeling Techniques 117

Modeling the dimensions consists of a series of activities that produce detailed
models for the various candidate dimensions which are part of the initial
dimensional model.

A detailed dimension model should incorporate all there is to capture about the
structure of the dimension as well as all of its attributes. One approach consists
of producing the dimension models in the form of a flat dimension table. This
approach results in models called star models or star schemas. Another
approach produces dimension models in the form of structured ER models. This
approach is said to produce so-called snowflake models or snowflake schemas.
Figure 62 illustrates the star model approach and Figure 63 illustrates the
snowflake approach for the Celdial case study.

Figure 62. Star Model for the Sales and Inventory Facts in the CelDial Case Study.

Figure 63. Snowflake Model for the Sales and Inventory Facts in the CelDial Case
Study.

118 Data Modeling Techniques for Data Warehousing

Dimensions play a particular role in a dimensional model. Other than facts,
whose primary use is in calculations, the dimensions are used primarily for:

 1. Selecting relevant facts

 2. Aggregating measures

The base structure of a dimension is the hierarchy. Dimension hierarchies are
used to aggregate business measures, like Total Revenue of Sales, at a lesser
level of detail than the base granularity at which the measures are present in the
dimensional model. In this case, the operation is known as roll-up processing.
Roll-up processing is performed against base facts or measures in a
dimensional model.

To illustrate roll up: Sales Revenue at the Regional level of CelDial′s Sales
Organization can be derived from the base values of the Revenue measure that
are recorded in the Sales facts, by calculating the total of Sales Revenue for
each of the levels of the hierarchy in the Sales Organization.

If measures are rolled up to a lesser level of detail as in the above example, the
end user can obviously also perform the inverse operation (drill down), which
consists of looking at more detailed measures or, to put it differently, exploring
the aggregated measures at lower levels of detail along the dimension
hierarchies. Figure 64 illustrates roll-up and drill-down activities performed
against the Inventory fact in the CelDial case.

Figure 64. Roll Up and Dri l l Down against the Inventory Fact.

For all of the above reasons, dimensions are also called aggregation paths or
aggregation hierarchies. In real life, where pure hierarchies are not so common,
a modeler very frequently has to deal with dimensions that incorporate several
different parallel aggregation paths, as in the example in Figure 65 on page 120.

Chapter 8. Data Warehouse Modeling Techniques 119

Figure 65. Sample CelDial Dimension with Parallel Aggregation Paths.

One of the essential activities of dimension modeling consists of capturing the
aggregation paths along which end users perform roll up and drill down. The
models of the dimensions produced as the result of these activities will further
be extended and changed when other modeling activities are performed, such as
modeling the variancy of slow-varying time dimensions, dealing with constraints
within the dimensions, and capturing relationships and constraints across
dimensions. These elaborated modeling activities can have an impact on the
dimensional model as a whole.

Now, let us explore the basics of dimension modeling (notice the subtle textual
difference between dimension modeling and dimensional modeling....),
developing models for some representative nontemporal dimensions for CelDial,
as well as for the time dimension.

8.4.4.1 Modeling of Nontemporal Dimensions
Figure 66 illustrates the Sales and Inventory facts in the CelDial case study with
their associated dimensions: Product, Manufacturing, Customer, Sales
Organization, and Time. Let′s explore the representative nontemporal
dimensions in the CelDial case study.

Figure 66. Inventory and Sales Facts and Their Dimensions in the CelDial Case Study.

120 Data Modeling Techniques for Data Warehousing

Notice that the dimensions in CelDial′s models in Figure 65 are extremely
simple. The Manufacturing dimension, for instance, consists of a manufacturing
key, a region, and a plant name. This provides support for selecting facts
associated with given manufacturing units or plants and aggregates them at
regional level. The Product dimension has some more properties, but still it is
only partly representative of reality: because we have captured particular
end-user requirements, we should expect to find only part of what the real model
should incorporate. The simplicity of the model is a consequence of end-user
focused development. Even though this approach may lead to an acceptable
solution for the identified end users and the queries they expressed, it usually
needs considerably more attention to produce a model that has the potential to
become acceptable for a broad set of users in the organization. Failing to
extend the solution model and in particular to make dimension models
representative for a broad scope of interest results in stovepipe solutions where
each group of end users has its own little data mart with which it is satisfied (for
a while). Such solutions are costly to maintain, do not provide consistency
beyond the narrow view of a particular group of users, and, as a consequence,
usually lack integration capabilities. Such solutions should be avoided at all
costs.

As a consequence, it is recommended that you consider modeling the
dimensions in a broader context. We illustrate this next. The effects of this
global approach to modeling the dimensions will become clear when we
progress through our examples.

The Product Dimension: The Product dimension is one of the dominant
dimensions in most dimensional models. It incorporates the complete set of
items an organization makes, buys, and sells. It also incorporates all of the
important properties of the items and the relationships among the items, as
these are used by end users when selecting appropriate facts and measures and
exploring and aggregating them against several aggregation paths that the
product dimension provides.

CelDial′s product context is inherently simple. Products are manufactured and
models of the products are stocked in inventories in manufacturing plants,
waiting for customers to buy them. In addition, end users are interested
primarily in sales analysis and do not seem to attach a lot of importance to
being able to analyze sales figures at different levels of aggregation. Product
level and Regional level analysis seems to be what they want. In this situation,
the product dimension built in the data warehouse can easily be represented by
a flat structure, such as the Product dimension table in Figure 66 on page 120.

In most cases, however, the product dimension is a rather big component of the
warehouse, potentially comprising several tens of thousands of items. The
product dimension in a data warehouse usually is derived from the product
master database, which is in most cases present in the operational inventory
management system. You also have to consider that users usually show interest
in far more extensive classification levels and classification types and that they
handle potentially hundreds of properties of the items. It then should become
clear that we should look at a broader context to bring out the real issues
involved in dimension modeling for the Product dimension.

Let us therefore have a look at what could happen with the Product dimension, if
CelDial were part of a large sales organization, comprising retail sales (mostly
anonymous sales) as well as corporate sales. Figure 67 on page 122 provides

Chapter 8. Data Warehouse Modeling Techniques 121

an initial model for the Inventory fact for our presumed extension of the primitive
CelDial case. To study the problem, we use the initial dimensional modeling
template introduced previously. Let us focus right here on the Product
dimension only.

Figure 67. Inventory Fact and Associated Dimensions in the Extended CelDial Case
Study.

The first observation to make is that although products are considered in sales
operations, customers buy product models and not products. This implies that
″Product″ can in fact be considered a category of product models. In addition, if
we also make the assumption that product models can be sold individually as
well as packaged in units, the modeler must rearrange the Inventory fact and the
Product dimension to account for that. In the situation illustrated in Figure 67,
the model is rearranged as follows: We recognize that we need a concept called
″Stock Keeping Unit,″ which represents how a particular model of a product is
available for sales to customers (be they anonymous or corporate customers)
and how it is being sold to customers.

Consider there examples:

• A pack of 4 Duracell AA-batteries is a stock keeping unit. It consists of a
particular production variant of Duracell′s AA-batteries (the product model).
The product in this case is Duracell AA-batteries.

• Another stock keeping unit may be a particular cellular phone or some other
electronic equipment, such as a notebook computer. These items definitely
have variants in the form of product models, but one can assume they will be
available for sales per unit. In this case, the stock keeping unit coincides
with the product model.

We recognize that a hierarchy of concepts exists in the problem domain and
that users in fact work with these concepts frequently in their queries: the
hierarchy is called the Product Inventory Category and it consists of three
layers: Stock keeping unit (the base or the most granular layer), Inventory
subcategory (which in our case coincides with product model), and Inventory
category (equivalent to Product).

The difference with the CelDial model for Inventory in Figure 66 on page 120 is
not yet very big, so let us consider one further step. Figure 68 on page 123

122 Data Modeling Techniques for Data Warehousing

highlights the product dimension in the Sales fact in our extended CelDial case.
Notice that we have incorporated the notion of stock keeping unit as described
previously.

Figure 68. Sales Fact and Associated Dimensions in the Extended CelDial Case Study.

In Figure 68, some other issues related to the Product dimension are illustrated.
For Sales, the model in Figure 68 provides support for aggregating sales figures
not only on the stock keeping unit level (e.g., total Revenue of all sales of 4-pack
Duracell Powercheck AA-batteries or IBM Thinkpad model 755CDVs) but also on
the level of Packaging unit. Therefore, all Sales Revenue for Duracell
AA-batteries, whether packed in 4-packs, 8-packs or 12-packs can be
consolidated. Also for Sales, the Brand has now been determined to be a useful
aggregation level for Sales revenue and all other Sales related measures. Using
the examples above, the analyst can now calculate Sales revenue for Duracell,
IBM, and all other brands being dealt with. Finally, in the Product Sales
Category, the Department level has been considered useful for some analysts.
This aggregation level can be used to aggregate sales revenue for such
categories as Personal Computers, Video Equipment, Hifi, Accessories, and
whatever else CelDial is doing business in. In addition to the extended Product
Sales Category, the model in Figure 68 also incorporates another aggregation
path within the Product dimension. This path is labeled ″Product storage
category″ and is used to categorize sales revenue figures based on Storage
Type (e.g., Packaged Items or Bulk) and Shelf Type (e.g., Stacked on Display,
Sampled, Advertised Only). Such properties associated with products which are
typical of the way the items are available and presented in the retail outlet can
indeed have significant influence on Sales revenue and therefore be of high
interest for the analyst.

Analyzing the Extended Product Dimension: The extension of the CelDial case
study is only meant to be illustrative of several important issues. It should be
apparent by now that when a particular group of end users and their
requirements expressed as or derived from a set of business queries they have
formulated, are considered in a narrow way as the problem to solve, the
resulting solution model could well be limited to what these particular end users
need. This usually leads to serious problems when new requirements surface
and, in particular, when new end-user groups are identified. To make a
dimensional model longer lasting and suitable for more user groups, it is of

Chapter 8. Data Warehouse Modeling Techniques 123

particular importance to model the dimensions from a conceptual point of view,
looking for fundamental aggregation paths and aggregation levels in which the
end-user community at large may be interested. Adding measures to well
defined facts usually can be done without much impact on the model at all. For
the dimensions however, this is certainly not true (notice that we have not yet
studied time variancy aspects within dimensions....). In the Inventory and Sales
models considered before, we apparently have to deal with three dimension
hierarchies within the Product dimension:

 1. Product Inventory categories
 2. Product Sales categories (also called the Merchandise hierarchy)
 3. Product Storage categories

The first two dimensional hierarchies show commonalities, in fact, it looks now
as though the Product Inventory categories path is a subset of the Product Sales
categories path. The modeler has to decide to merge the two paths in one or
keep them separate. This is largely a matter of semantics: do these paths
actually represent exactly the same things or not? If so, they probably should be
merged together.

You should expect to have several different aggregation paths within a single
dimension, as soon as the problem domain is considered in a broad context.
Splits in the dimension hierarchies can occur at different levels. Hierarchies that
were split can later be split again. This process can obviously result in complex
schemas, perhaps too complex for end users to deal with. Common sense
should be applied, and unnecessary complications avoided.

An important and often difficult decision to make is whether an aggregation level
actually is an element of a hierarchy (a structural hierarchy, that is) or whether it
simply is a property of an item in the dimension. Is it, for instance, wise or
required to keep the packaging unit or the brand or the storage type as explicit
elements (read: potential entity types in the dimension ′s hierarchies) of the
dimension path or can they simply be considered properties of the products?

When investigating how exactly one has to deal with this issue in the dimension
model, the modeler usually is tempted to flatten the dimension structure and
ultimately reduce the whole part to a set of properties of items in the base
dimension table. When doing this, the modeler is actually transforming the
structured snowflake model for the dimension into a flat (or flatter) star schema.

Looking for Fundamental Aggregation Paths: Looking for fundamental
aggregation paths within a dimension like the Product dimension usually means
investigating a number of typical relationships within the dimension (many of
these relationships are in fact relationship patterns that exist in most
dimensions, by the way.):

 1. Construction or structural relationships

These relationships, usually represented as a bill of material (BOM), are
used by information analysts to explore constructive relationships between
products and their components. For instance, the BOM can be used to
calculate the cost of a product, using the costs associated with the product′s
components and the costs associated with the construction of the product.

 2. Variation relationships

Variations are used to differentiate products in terms of product models,
versions, implementations, component mixtures, blends, and so on.

124 Data Modeling Techniques for Data Warehousing

Variations may also be used to identify product replacements. Information
analysts use variation relationships to group related products and aggregate
associated measures, because the lower level categories of products may
only exist for a limited period of time or because they are frequently used to
replace each other in a process (e.g., when a version of a product is sold to
customers when the ″original″ item is out of stock).

 3. Classification relationships

Classifications are arrangements of like products into groups. Classifications
of relationships are obviously the most frequently occurring relationships
between products that information analysts use to roll up detailed measures
like Sales Revenue in the CelDial case. Notice that several different kinds of
classifications are usually required. For example, products may be classified
according to sales oriented, manufacturing-oriented, stocking-oriented, or
supply-oriented characteristics. Information analysts use classifications for
aggregating measures in statistical groupings such as totals, averages,
minima, and maxima.

All of these relationships are obvious candidates for being modeled in the
product dimension. Exactly how many of them should be incorporated in a
model of the dimension is subject to the best judgment of the modeler, who will
take into account the scope of the project.

The Manufacturing Dimension: CelDial′s manufacturing dimension is a typical
organizational dimension of which several different variants can be found in
many data warehouse models. CelDial ′s Manufacturing dimension is trivially
simple. It somehow incorporates the inventory organization (in other words, the
physical warehouses and stocking locations), represented here by the notion of
″the plant.″ In addition, a regional aggregation facility is provided for satisfying
stated end-user requirements.

In reality, the Manufacturing dimension should be investigated with the intention
of establishing a solid and flexible model, representing the manufacturing
organization. Two typical aspects may be important for the Manufacturing
dimension, when looked upon from the viewpoint of sales analysis. If the
coverage of the Manufacturing dimension would also be extended to other
information analysis domains (such as analyzing costs of manufacturing
activities), other important aspects would have to be added to the dimension
model.

First of all, the manufacturing dimension possibly can incorporate stock keeping
as it is done in the company. When analyzing the scope and content of the
Manufacturing dimension, it should firmly be established to what extent the
inventory and stock keeping organization should be part of this dimension or
whether all of these related items should best be made into a corporate
dimension.

If the company would later also show interest in setting up a detailed inventory
analysis system, this data warehouse model would certainly develop an
extensive Warehouse or Inventory dimension, in which parts of the
manufacturing dimension could be integrated. One of the questions the CelDial
data warehouse modeler is facing is determining how much generic modeling
should be performed. As we indicated for the Product dimension, it usually is
advantageous to make dimension models as generic as possible. This
recommendation also holds for an important dimension such as CelDial′s
Manufacturing dimension.

Chapter 8. Data Warehouse Modeling Techniques 125

The Manufacturing dimension typically can also include cost elements
associated with the manufacturing process. These cost elements may be
important for the sales analysis process, because the analysts expressed their
interests in Sales Revenue as well as in Profit.

The Customer Dimension: The Customer dimension, which is appropriate for a
manufacturing company like CelDial, would almost certainly have two major
aggregation paths or dimension hierarchies:

• One path would represent the Shipping and Billing aspects related to
customers

• Another candidate path would concentrate on the Regional location of
customers.

The CelDial case also includes individual customers. This usually makes the
Customer dimension potentially extremely large. Such Customer dimensions
need special attention. Financial service companies, retailers, and telephone
companies all have such Customer dimensions, with millions of entries.
Customer dimensions such as these often are used for analyzing measures and
facts using demographic properties associated with customers. Examples of
such properties are age, sex, marital status, number of children in the family,
income levels, and education types and levels. These fields are usually heavily
involved in composite selections.

In such cases, we suggest creating demographic profiles, which consist of a
representative combination of demographic properties of customers. Although
customers keep on having their detailed demographic properties stored in the
Customer dimension, they also become associated with the demographic
profiles that have been established. Using this approach can result in significant
savings in terms of complexities of queries end users otherwise would have to
perform as well as in substantial performance benefits. In addition, the
demographic profiles establish a kind of standard classification schema
applicable for customers.

The technique of creating demographic profiles can also be used for other very
large dimensions in which the elements have a large number of properties that
end users tend to combine in their selection criteria. The Product dimension
often has such characteristics.

The Sales Organization Dimension: The Sales Organization dimension is one of
the core organizational dimensions for sales-oriented information analysis. It
incorporates all information required to classify and aggregate detailed sales
information according to Sales persons, Sales teams, and Sales territories,
districts, and regions.

The Sales Organization dimension usually is considerably smaller than the
Product and Customer dimensions. It incorporates an organizational and a
regional hierarchy. The Sales Organization dimension typically also includes
interesting relationships with the Customer dimension, to identify territory
relationships and sales responsibilities existing between Sales persons in the
organization and customers. For this reason, the Sales organization dimension
is sometimes incorporated as a dimension hierarchy within the Customer
dimension.

126 Data Modeling Techniques for Data Warehousing

The Time Dimension: Because a data warehouse is an integrated collection of
historical data, the ability to analyze data from a time perspective is a
fundamental requirement for every end user of the data warehouse.

Given that end users perform aggregations and roll up and drill down using
various elements of time (such as day, week, month, year, fiscal year, promotion
period, holiday, weekend or business day, and holiday period), we can easily
see that a time dimension will have to be added explicitly to the data warehouse.
Although relational databases (RDBMSs) and SQL provide some means of
working with dates, times, time stamps, and durations, today ′s RDBMS support
of time is by far not sufficient to support the kinds of aggregating and drilling
activities that information analysts perform.

As a consequence, and for the very same reasons Product and Customer
dimensions had to be developed and added to the dimensional model, we have
to add explicitly a time dimension to the model. As we will see in this section,
this time dimension provides end users with a source of structured temporal
elements, relationships between these time elements, and even temporal
constraints to help them in their information analysis activities. The time
dimension also provides a source of row headers for reporting purposes and
other textual and descriptive information about time.

In the next few sections, we develop a concise model of the time dimension.

8.4.4.2 Developing the Basis of a Time Dimension Model
Let us first consider how to set up a time dimension model that would support a
granularity level of day throughout the data warehouse.

The time dimension should in the first place provide support for working with
calendar elements such as day, week, month, quarter, and year. Figure 69
shows an example of a simple model that supports such elements.

Figure 69. Base Calendar Elements of the Time Dimension.

The model in Figure 69 incorporates the following assumptions:

Chapter 8. Data Warehouse Modeling Techniques 127

 1. Each fact with a time granularity of day can be associated with the base time
dimension element ″Day.″

 2. Day is part of a Month, which is part of a Quarter, which in turn is part of a
Year. This hierarchy is captured directly in the model.

 3. Day is also part of a Week, but Week does not gracefully fit within any of the
other calendar elements (Month, Quarter, or Year). We therefore do not
have any aggregation path from Week to any of the other (higher level) time
dimension elements.

 4. Each of the time dimension elements in the model has a unique key, which
should preferably be an absolute number that can be used to identify the
elements at occurrence level. This can be achieved by setting a fixed
reference date as the ″starting point″ for numbering all other temporal
elements.

 5. All of the elements in the time domain are provided with (many)
calendar-related properties.

Users can now query any fact table that can be associated with the time
dimension, asking for total Sales Revenue on a particular day, say 7/31/97; roll
up per Month, for instance, Total Sales Revenue for the month of July 1997; and
further roll up to total Revenue for the year 1997. Similarly, rolling up daily
measures to week totals or averages is also possible.

Using the attributes of the calendar elements in this time dimension model, end
users can further explore temporal aspects of facts, such as selecting all Sales
facts that can be associated with Tuesdays of the first Quarter of 1996.

About Aggregation Paths above Week: Considering the Week element in the
time dimension and, in particular, possible aggregation paths from Week to
either Month, Quarter, or Year leads us to a peculiar problem with parallel
aggregation paths in general. The base issue is illustrated in Figure 70 on
page 129, where possible aggregation paths are considered between Week and
Year (from Week to Month or from Week to Quarter leads to similar
considerations).

128 Data Modeling Techniques for Data Warehousing

Figure 70. About Aggregation Paths from Week to Year.

The issue stems from the fact that weeks do not fully fit within years, as opposed
to days. A year consists of 52+ weeks, and, as a matter of fact, every six years
the year consists of 53 weeks. The time dimension modeler therefore has to
decide which relationship between Week and Year can be and should be
incorporated in the model. One possible solution is to associate each week with
the year in which it starts. A similar solution would be to associate each week
with the year in which it ends. Other solutions may also be feasible.

If any of these associations between Week and Year is present in the model, end
users will have to be made aware of it because they obviously have to know the
precise semantics of the association.

There is more that end users will have to know, however. If any of these
associations is present in the time dimension model, end users must be made
aware of the fact that an aggregation performed with the
Day-Month-Quarter-Year path will yield different results from those of an
aggregation performed on the same base facts with the Day-Week-Year path. To
verify this statement, try to aggregate Sales Revenue using the
Day-Month-Quarter-Year path and the Day-Week-Year path. In principle, the
values you get will differ.

There are a couple of ways to deal with this situation. One of the solutions
consists of simply informing the end users and telling them not to switch paths
when aggregating from the Day level. Another solution consists of deleting the
Week-Year association. Now end users can no longer really aggregate from
Week to Year. A third solution consists of adding a new temporal element in the
time dimension, which could be called the Weekly Reporting Year.

As a ground rule, if two parallel consolidation paths within a dimension have a
common start and end point, the modeler should be absolutely sure that
aggregating measures along any such paths would result in exactly the same
aggregated results. If not, either of the three alternative solutions illustrated
above should be considered for the model. Although we brought up the

Chapter 8. Data Warehouse Modeling Techniques 129

modeling issue when dealing with the time dimension, the problem of cyclic
paths in a dimensional model is a general problem. It may occur in other
dimensions as well.

Business Time Periods and Business-Related Time Attributes: In the time
dimension model of Figure 69 on page 127, only temporal elements and time
attributes are included, with a fixed definition and meaning within a given
calendar. Organizations have their own business time periods, however, such
as fiscal years, seasons, promotion periods, and holiday periods. In addition,
several time-related attributes have a precise meaning only within a given
organizational context. Figure 71 illustrates candidate business time periods
and business-related time attributes that should further be added to the time
dimension model.

Figure 71. Business-Related Time Dimension Model Artifacts.

The result of adding these elements and attributes to the time dimension model
is illustrated in Figure 72 on page 131.

130 Data Modeling Techniques for Data Warehousing

Figure 72. The Time Dimension Model Incorporating Several Business-Related Model
Artifacts.

Making the Time Dimension Model More Generic: The time dimension model in
Figure 72 is becoming quite complex. In addition, the model itself is not very
resilient to changes in the area of business-related time periods. Knowing that
new kinds of time periods will constantly be defined, we can say that the model
in Figure 73 results in a better solution. With the supertype/subtype modeling
technique, promotion periods, holiday periods, and other business-related time
periods with a substantial amount of similar attributes and relationships with
other elements of the time dimension are modeled as subtypes of a more
generic element of the model called Business Period. If, in addition, the
business period types are added to the model, the structure becomes much
more flexible and simple.

Figure 73. The Time Dimension Model with Generic Business Periods.

Chapter 8. Data Warehouse Modeling Techniques 131

Flattening the Time Dimension Model into a Dimension Table: Figure 74 on
page 132 illustrates the effects of transforming the structured time dimension
model of Figure 73 into a flat dimension table. The result is quite tricky, when
done for this kind of model.

Figure 74. The Flattened Time Dimension Model.

When comparing the structured and flat time dimension models in Figure 73 on
page 131 and Figure 74, it becomes apparent that end users will have to be
much more considerate when they roll up through the flat time dimension. The
flat structure, although easy to understand and query, requires a good
understanding of the implicitly incorporated hierarchies within it. The snowflake
structure documents the explicit structure of the hierarchies and is thus less
likely to be misinterpreted. However, the structured snowflake schema definitely
is more complex to understand, and it will obviously also be more time
consuming to explore the relationships between the modeling elements.

The Time Dimension As a Means for Consistency: The company as a whole
must agree on precise definitions and specifications of the time-related elements
used by the various information analysts. The time dimension can be of great
help to achieve this kind of companywide consistency. Ideally, within the whole
data warehouse, there is only one time dimension, which reflects exactly how
the company deals with its time-related aspects of information analysis.

The time dimension is densely packed with attributes and relationships. This
density becomes even more pronounced if several countries or cultures are
involved and there are wide variations of business periods and business-related
time attributes within the company. In such cases, the corporatewide time
dimension may be developed and populated centrally and be made available for
local or departmental use. Departmental or even lower-level time dimensions
should then be derived from the corporate time dimension, and these should
include exactly those modeling elements, relationships, and attributes that the
end users require.

This way or organizing the time dimension in two modeling ″layers″ (one
complex corporate time dimension with several local time dimensions derived

132 Data Modeling Techniques for Data Warehousing

from it) usually is an ideal solution. The simpler local time dimensions also are
more suitable for being flattened into a time dimension table. In this way, the
performance and querying capabilities of the total solution are further
maximized.

Notice that in the absence of a corporatewide time dimension, every end-user
group or every department will develop its own version of the time dimension,
resulting in unlike meanings and different interpretations. Because time-related
analysis is done so frequently in data warehouse environments, such situations
obviously provide less consistency.

Lower Levels of Time Granularity: Depending on specific business organization
aspects and end-user requirements, the granularity of the time dimension may
have to be even lower than the day granularity that we assumed in the
previously developed examples. This is typically the case when the business is
organized on the basis of shifts or when a requirement exists for hourly
information analysis.

8.4.4.3 Modeling Slow-Varying Dimensions
We have investigated the time dimension as a specific dimension in the data
warehouse and have assumed that dimensions are independent of time. What
we now need to investigate is how to model the temporal aspects in the
dimensions of the dimensional data model. Dimensions typically change slowly
over time, in contrast to facts, which can be assumed to take on new values
each time a new fact is recorded. The temporal modeling issues for dimensions
are therefore different from those for facts in the dimensional model and
consequently also the modeling techniques, commonly referred to as modeling
techniques for slow-varying dimensions.

When considering slow-varying dimensions, we have to investigate aspects
related to keys, attributes, hierarchies, and structural relationships within the
dimension. Key changes over time are obviously a nasty problem. Changes to
attributes of dimensions are less uncommon, but special care has to be taken to
organize the model well so that attribute changes can be recorded in the model
without causing (too much) redundancy. Structural changes also occur
frequently and must be dealt with carefully. For example, a product can change
from category X to category Y, or a customer can change from one demographic
category into another.

About Keys in Dimensions of a Data Warehouse: Keys in a data warehouse
should never change. This is an obvious, basic tenet. If it is not met, the data
warehouse ′s ability to support analysis of yesterday′s and today′s data, say, 10
years from now, producing the same results as we get today, will be hampered.
Likewise, if keys in the data warehouse change, it will soon become difficult to
analyze the data in the data warehouse over long periods of time.

Making keys in a data warehouse time-invariant is a nasty problem, however,
involving a number of specific issues and considerations related to the choice of
keys and to their generation and maintainability. Figure 75 on page 134 depicts
one example of the effects of time variancy on keys. In that example, we must
capture the event history, but it needs to reflect state history. In this case, we
add fields to reflect the date and duration of state changes.

Data moved into a data warehouse typically comes from operational application
systems, where little or no history is kept. OLTP applications perform insert,

Chapter 8. Data Warehouse Modeling Techniques 133

update, and delete operations against database records, thereby creating key
values and destroying them. Even updates of key values may occur, in which
case the new key values may represent the same objects as before the change,
or they may represent new ones. When data records are inserted in the OLTP
database and consequently when key values for the inserted records are
established, these values may be new ones or reused ones. If key values are
being reused, we will have to find a solution for these keys in the data
warehouse environment, to make sure the history before the reuse took place
and the history after the reuse are not mistakenly considered to be part of a
single object′s lifespan history.

Yet another typical issue with keys in a data warehouse is when data for a
particular object comes from several different source data systems. Each
system may have its own set of keys, potentially of totally different format. And
even if they would have the same format, a given key value in one source
system may identify object ABC while in another system it could identify object
XYZ.

Figure 75. Time Variancy Issues of Keys in Dimensions.

Based on these observations, we can no longer expect to be able to take the
simple solution and keep the OLTP source data keys as the data warehouse
keys for related objects. The simple trick may work, but in many cases we will
have to analyze and interpret the lifespan history of creation, update, and
deletion of records in the source database systems. Based on this analysis of
the lifespan history of database objects, we will have to design clever
mechanisms for identifying data warehouse records and their history recordings.

Typical elements of a key specification mechanism for a data warehouse are:

• A mechanism to identify long-lasting and corporatewide valid identifiers for
objects whose history the data warehouse will record. These identifiers may
be external or internal (system-generated) identifiers. Internal identifiers are
obviously difficult to use by external end users. They can be used only
internally to associate the different records and subrecords that make up the
object′s representation in the data warehouse. One possible technique

134 Data Modeling Techniques for Data Warehousing

consists of concatenating the object′s key in the OLTP source database (if
suitable for the data warehouse environment) with the record ′s creation time
stamp. More complex solutions may be required.

• Techniques to capture or extract the source database records and their keys
and translate them mechanically into the chosen data warehouse keys. The
technique mentioned above, consisting of concatenating the OLTP key with
the creation time stamp, is rather easily achievable if source data changes
are captured. We may have to deal with more complex situations; in
particular, having to provide key value translations, using lookup tables, is a
common situation. Notice too that if lifespan histories are important for
transforming key values for the data warehouse, it must be possible to
capture and interpret the lifespan activities that occur in the OLTP source
systems. It obviously makes no sense to design a clever key mechanism
based on recognizing inserts, updates, and deletes, if these operations
cannot consistently and continuously be captured.

• The mechanism of key transformations will have to be extended with key
integration facilities, if the records in the data warehouse are coming from
different source application systems. This obviously increases the burden on
the data warehouse populating subsystem.

• When keys are identified and the key transformation system is established, it
is good practice to do a stability check. The designer of the key system for
the data warehouse should envisage what happens with the design
specifications if operational systems are maintained, possibly involving
changes to the source system′s key mechanism or even to its lifespan
history. Another important aspect of this stability check would be to
investigate what happens if new source application systems have to be
incorporated into the data warehouse environment.

The issues about keys discussed above are typical for data warehouses. They
should be considered very carefully and thoughtfully as part of the activities of
modeling the slow-varying dimensions. The solutions should be applicable too
for keys in the fact tables within the dimensional model. Keys in fact tables are
most frequently foreign keys or references to the primary identifier of data
warehouse objects, as they are recorded in the dimensions. Notice too that
dimension keys should preferably not be composite keys, because these cause
difficulties in handling the facts.

Because data marts usually hold less long-lasting history (frequently, data marts
are temporal snapshots), the problems associated with designing keys for a data
mart may be less severe. Nevertheless, the same kinds of considerations apply
for data marts, especially if they are designed for a broad scope of usage.

In 8.4.4.4, “Temporal Data Modeling” on page 139 we develop more techniques
for transforming nontemporal data models (like the dimensional models we have
developed so far) into temporal models suitable for representing long-lasting
histories. For those of you not fully familiar with the issues mentioned here, that
section will help you further understand the types of problems and the
techniques for handling them.

Dealing with Attribute Changes in Slow-Varying Dimensions: The kind of
problems we have to deal with here can be illustrated as follows. Operational
applications perform insert, update, and delete operations on the source
databases and thereby replace the values that were previously recorded for a

Chapter 8. Data Warehouse Modeling Techniques 135

particular object in the database. Operational applications that work in that way
do not keep records of the changes at all. They are inherently nontemporal.

If such source databases are extracted, that is, if a snapshot of the situation of
the database is produced, and if that snapshot would be used to load the data
warehouse ′s dimensions, we would have inherently nontemporal dimensions. If
a product in the product dimension would be known to have the color red before
the snapshot of the product master database is loaded in the data warehouse,
that product could have any color (including its previous color red) after the
snapshot is loaded. Slow-varying dimension modeling is concerned with finding
solutions for storing these attribute changes in the data warehouse and making
them available to end users in an easy way (see Figure 77 on page 138).

Figure 76. Dealing with Attribute Changes in Slow-Varying Dimensions.

What we have to do, using the previous example of a product and its attribute
color in the product dimension, is record not only the value for the product′s
color but also when that value changes or, as an alternative solution, record
during which period of time a particular value for the color attribute is valid. To
put it differently, we either have to capture the changes to the attributes of an
object and record the full history of these changes, or we have to record the
period of time during which a particular value for an attribute is valid and
compile these records within a continuous recording of the history of the
attribute of an object.

With the first approach, called event modeling, data warehouse modeling would
enable the continuous recording of the changes that occurred to the product ′s
color, plus the time when the change took place.

The second approach, called state modeling, would produce a model for the
slow-varying product dimension which would enable the recording of the
product ′s color plus the period of time during which the particular color would be
valid.

Both event and state modeling approaches are viable techniques for modeling
slow-varying dimensions. As a matter of fact, both techniques can be mixed
within a given dimension or across the dimensions of the data warehouse.
Deciding which technique to use can be done considering the prime use of data
in the dimension: If there is more frequent interest in knowing when a particular

136 Data Modeling Techniques for Data Warehousing

value was assigned to an attribute, an event modeling technique is naturally
fitting. If there is more frequent interest in knowing when or how long a
particular value of an attribute is valid, a state modeling approach is probably
more suitable. For data marts with which end users are directly involved, this
decision will be somewhat easier to make than in cases where we do dimension
modeling for corporate data warehouses.

Notice that change events can be deduced from state models only by looking at
when a particular value for an attribute became valid. In other words, to know
when the color changed, if the product dimension is modeled with a state
modeling technique for the color attribute, just look at the begin dates of the
state recordings. Likewise, the validity period of the value of an attribute, for
example, the color red, can be deduced from an event model. In this case, the
next change of the attribute must be selected from the database, and the time of
this event must be used as the end time of the validity period for the given value.
For example, if you want to find out during which period the color of a given
product was red, look for the time the color effectively turned red first and then
look for the subsequent event that changed the color. It is clear that querying
and performance characteristics of the two cases are not at all the same. That
is why the choice of modeling technique is driven primarily by information
analysis characteristics.

Modeling of slow-varying dimensions usually becomes impractical if the
techniques are considered on an attribute level. What is therefore required are
techniques that can be applied on records or sets of attributes within a given
database record. In 8.4.4.4, “Temporal Data Modeling” on page 139, we show
exactly how this can be performed.

Modeling Time-Variancy of the Dimension Hierarchy: We have not discussed at
all how to handle changes in the dimension′s hierarchy or its structure. So let′s
investigate what happens to the model of the dimension if changes occur that
impact the dimension hierarchy (see Figure 78 on page 139).

At first, there seem to be two issues that need to be looked at. One is where the
number of levels in the hierarchy stay the same, and thus only the actual
instance values themselves change. The other is when the number of dimension
hierarchy levels actually changes, so that an additional hierarchy level is added
or a hierarchy level is removed.

Let′s consider first the situation when a hierarchy instance value changes. As
an example, consider the situation where the Category of Product ABC changes
from X into Y. Notice we also want to know when the change occurred or,
alternatively, during which period Product ABC belonged to Categories X or Y.

Chapter 8. Data Warehouse Modeling Techniques 137

Figure 77. Modeling Time-Variancy of the Dimension Hierarchy.

In a star schema, the category of Product ABC would simply be one of the
attributes of the Product record. In this case, we obviously are in a situation that
is identical to the attribute situation, described in the previous section. The
same solution techniques are therefore applicable.

If a snowflake modeling approach for the Product dimension would have been
used, the possible product categories would have been recorded as separate
records in the dimension, and the category of a particular product would actually
be determined by a pointer or foreign key from the product entry into the
suitable Category record. To be able to capture the history of category changes
for products in this case, the solution would consist of capturing the history of
changes to the foreign keys, which again can be done using the same
attribute-level history modeling techniques described above.

A somewhat bigger issue for modeling slow-varying dimensions is when there is
a need to consider the addition or deletion of hierarchy levels within the
dimension. The solution depends on whether a star or a snowflake schema is
available for the dimension. In general though, both situations boil down to using
standard temporal modeling techniques.

138 Data Modeling Techniques for Data Warehousing

Figure 78. Modeling Hierarchy Changes in Slow-Varying Dimensions.

For dimensions with a flat star model, adding or deleting a level in a hierarchy is
equivalent to adding or deleting attributes in the flat dimension table that
represent the hierarchy level in that dimension. To solve the problem, the
modeler will have to foresee the ability to either add one or more attributes or
columns in the dimension table or to drop the attributes. In addition to these
changes in the table structure, the model must also make room for adding time
stamps that express when the columns were added or dropped.

For dimensions with a snowflake schema, adding a dimension level or deleting
one must be modeled as a change in the relationships between the various
levels of the hierarchy. This is a standard technique of temporal data modeling.

As soon as the data warehouse begins to support requirements related to
capturing structural changes in the dimension hierarchies, including keeping a
history of the changes, end users will be facing a considerably more complex
model. In these cases, end users will need more training to understand exactly
how to work with such complex temporal models, analyze the data warehouse,
and exploit the rich historical information base that is now available for roll up
and drill down. How exactly to deal with this situation depends to a large extent
on the capabilities of the data analysis tools.

8.4.4.4 Temporal Data Modeling
Temporal data modeling consists of a collection of modeling techniques that are
used to construct a temporal or historical data model. A temporal data model
can loosely be defined as a data model that represents not only data items and
their inherent structure but also changes to the model and its content over time
including, importantly, when these changes occurred or when they were valid
(see Figure 79 on page 140). As such, temporal or historical data models
distinguish themselves from traditional data models in that they incorporate one
additional dimension in the model: the time dimension.

Chapter 8. Data Warehouse Modeling Techniques 139

Figure 79. Adding Time As a Dimension to a Nontemporal Data Model.

Temporal data modeling techniques are required in at least two important
phases of the data warehouse modeling process. As we have illustrated before,
one area where these techniques have to be applied is when dealing with
temporal aspects of slow-varying dimensions in a dimensional model. The other
area of applicability for temporal data modeling is when the historical model for
the corporate data warehouse is constructed. In this section, we exploit the
basic temporal modeling techniques from a general point of view, disregarding
where the techniques are used in the process of data warehouse modeling.
Notice that temporal modeling requires a lot more careful attention than just
adding time stamps to tuples or making whole sections of data in the data
warehouse dependent on some time criterion (as is the case when snapshots
are provided to end users). Temporal modeling can add substantial complexity
to the modeling process and to the resulting data model.

In the remainder of this section, we use a small academic sample database
called the Movie Database (MovieDB) to illustrate the techniques we cover.
Notice that the model does not include any temporal aspects at all, except for
the ″Year of Release″ attribute of the Movie entity (see Figure 81 on page 142).

140 Data Modeling Techniques for Data Warehousing

Figure 80. Nontemporal Model for MovieDB.

Let us assume that an ER model is available that represents the model of the
problem domain for which we would like to construct a temporal or historical
model. This is for instance the situation one has to deal with when modeling the
temporal aspects of slow-varying dimensions: the dimension model is either a
structured ER model, when the dimension is part of a snowflake dimensional
model, or a flat tabular structure (in other words, coincides with a single entity)
when the dimension is modeled with a star modeling approach.

Likewise, when the corporate data warehouse model is constructed, either a
new, corporatewide ER model is produced or existing source data models are
reengineered and integrated in a global ER schema, which then represents the
information subject areas of interest for the corporate data warehouse.
Temporal data modeling can therefore be studied and applied as a model
transformation technique, and we develop it from that perspective in the
remainder of this section.

Preliminary Considerations: Before presenting temporal modeling techniques,
we first have to review some preliminary considerations. As an example, a
number of standard temporal modeling styles or approaches could be used.
Two of the most widely used modeling styles are cumulative snapshots and
continuous history models (see Figure 81 on page 142 and Figure 82 on
page 143).

A database snapshot is a consistent view of the database, at a given point in
time. For instance, the content of a database at the end of each day, week, or
month represents a snapshot of the database at the end of each day, week, or
month.

Temporal modeling using a cumulative snapshot modeling style consists of
collecting snapshots of a database or parts of it and accumulating the snapshots
in a single database, which then presents one form of historical dimension of the
data in the database. If the snapshots are taken at the end of each day, the
cumulative snapshot database will present a perception of history of the data in
this database, consisting of consecutive daily values for the database records.
Likewise, if the snapshots are taken at the end of each month, the historical
perspective of the cumulative snapshots is that of monthly extracted information.

Chapter 8. Data Warehouse Modeling Techniques 141

Figure 81. Temporal Model ing Styles.

The technique of cumulative snapshots is often applied without considering a
temporal modeling approach. It is a simple approach, for both end users and
data modelers, but unfortunately, it has some serious drawbacks.

One of the drawbacks is data redundancy. Cumulative snapshots do tend to
produce an overload of data in the resulting database. This can be particularly
nasty for very large databases such as data warehouses. Several variants of the
technique are therefore common practice in the industry: snapshot accumulation
with rolling summaries and snapshot versioning are two examples.

The other major drawback of cumulative snapshot modeling is the problem of
information loss, which is inherent to the technique. Except when snapshotting
transaction tables or tables that capture record changes in the database,
snapshots will always miss part of the change activities that take place within
the database. No variants of the technique can solve this problem. Sometimes,
the information loss problem can be reduced by taking snapshots more
frequently (which then tends to further increase the redundancy or data volume
problem), but in essence, the problem is still there. The problem can be a
serious inhibitor for data warehousing projects. One of the areas where
snapshotting cannot really produce reliable solutions is when full lifespan
histories of particular database objects have to be captured (remember the
section, “About Keys in Dimensions of a Data Warehouse” on page 133,
covering issues related to keys in dimensions of a data warehouse).

The continuous history model approach aims at producing a data model that can
represent the full history of changes applied to data in the database. Continuous
history modeling is more complex than snapshotting, and it also tends to
produce models that are more complex to interpret. But in terms of history
capturing, this approach leads to much more reliable solutions that do not suffer
from the information loss problem associated with cumulative snapshots.

142 Data Modeling Techniques for Data Warehousing

Figure 82. Continuous History Model.

In the remainder of this section, we explore techniques for temporal modeling
using a continuous history modeling approach.

Time Stamp Interpretations: One of the first things you will do as a data
modeler involved in temporal modeling is consider the addition of time stamps
to the records of the database. In most cases, the first thing to do will actually
be to look for existing time stamps or time-related attributes in records, such as
dates. As a modeler, however, you should be aware of the fact that time stamps
or date attributes in records may have different interpretations. Interpreting time
stamps correctly and making sure the right time stamps are available in records
of the historical data model are important activities.

Time stamps can indeed have several different meanings (see Figure 82). Some
time stamps can represent what is known as ″valid times,″ in which case they
are representative of what happens in real life. Some examples of valid time
time stamps are: dates recorded on documents (the assumption is that the dates
are recorded correctly), time stamps created through point-of-sales recording or
scanning or through process controllers directly attached to robots or other
manufacturing equipment.

Figure 83. Different Interpretations of Time.

Other frequently encountered time stamp interpretations are:

Chapter 8. Data Warehouse Modeling Techniques 143

• Transaction time: representing the time at which the operational system
performed the transaction associated with a real life activity

• Capture time: the time stamp that represents the time at which the record
was extracted or captured from the source database

• Apply time: the time stamp associated with the time at which the record was
loaded in the data warehouse.

It is important to stress that these time stamps can be fundamentally different.
Since analysis of data in a data warehouse frequently involves selecting,
comparing, and/or joining records together on the basis of time stamps, care
should be taken when time stamps with different interpretations (or date columns
of any sort, to give just a simpler example) are used in these analysis
operations. Time stamps in records belong to a particular domain, just as any
other attribute in a model or any column in a table of a relational database. And
we all know (do we?) that elements drawn from different domains should in
principle not be used in joins and comparisons, unless there is some mapping
mechanism provided. Unfortunately, database systems usually do not support
these kinds of considerations (unless user-defined data types and
object-relational extensions would be applied), and data modelers tend to
overlook this problem.

We suggest that you pay particular attention to choosing the right interpretations
of time stamps in the historical data model and that these interpretations be
made available to end users through the metadata. Records can contain several
different time stamps, drawn from different domains.

Instant and Interval Time Stamps: Two basic techniques are available for adding
time stamps to records: instant time stamps and interval time stamps (see
Figure 84).

Figure 84. Instant and Interval Time Stamps.

Instant time stamps are single-valued time stamps that represent an instance of
time. When an instant time stamp is added to a record, the record basically
represents a transaction or an event that occurred or a data change being
captured from the operational application system.

144 Data Modeling Techniques for Data Warehousing

Interval time stamps represent a period of time or a time interval. Interval time
stamps are in principle two-valued. They consist of either a begin time and an
end time or a begin time and a duration. Interval time stamps are used basically
for modeling the status of a record during a given period. A little complication
comes up when intervals have a fixed duration, such as a day or a month. In
this case, an apparently single-valued time stamp (a date or an attribute that
represents a month for instance) may actually represent a period rather than an
instant of time.

The difference between the two is not trivial. Consider for instance the following
two situations, where the data models in fact are basically identical. Situation 1
provides a model for ticket sales associated with movies where each sales
transaction is recorded, incorporating the number of tickets sold and the day the
sale took place. In this case, the numbers in the ticket sales column of the
database may freely be added across time, for instance, to calculate the total
amount of tickets sold for the whole day or per month.

Situation 2 takes another temporal modeling approach. Here, the ticket sales
are accumulated in a source application, and once per day (or once per hour if
you wish), the value of ticket sales is extracted from the database and recorded
in the temporal database, together with the day the extract took place. This is
apparently the same temporal model as the previous solution, but now, it does
not make sense to add the ticket sales per day or per month.

The basic difference between the two models is in the interpretation of the time
stamp in the two records: in the first solution, the time stamp is an instant
timestamp and the record represents actual ticket sales. In the second solution,
the time stamp is in fact a (fixed duration) interval time stamp. Ticket sales in
the second solution are inherently nonadditive over time.

Base Temporal Modeling Techniques

Adding Time Stamps to Entities: To kick off temporal modeling, time stamps are
added to the entities of the base model. This process involves the following
activities (illustrated with the MovieDB sample in Figure 85):

Figure 85. Adding Time Stamps to the MovieDB Entities.

 1. Determine whether entities contain ″useful″ t ime stamps. If so, make sure
you capture the precise interpretation of these attributes.

Chapter 8. Data Warehouse Modeling Techniques 145

 2. Add time stamps to entities, either because they do not have a usable time
stamp or because they do not have a time stamp with the suitable
interpretation. In the process of adding time stamps, you have to determine
whether the entity will be modeled using an event or state record.

The difference between an event and a state record is of fundamental
importance. Event records are used to model transactions, events that
happen in the real world, data changes that are captured, etc. State records
are used to represent the status of attributes during a given period, the
period being represented by the interval time stamp which is in the record.

Event records should be given instant time stamps (inherently single-valued).
State records should be given an interval time stamp (two-valued, or, if it
involves a fixed-duration period, single-valued).

In the example above, two entities are modeled using state records (Studio
and Director), the Movie entity is modeled using an event record.

 3. You can now also decide for which entities no history is to be kept at all. For
those entities, time stamps must not be added. In the MovieDB sample, we
have apparently decided not to keep track of the history of Actor.

 4. Use a particular time stamp format across all of the entities that belong to
the same temporal domain. This may have the effect that some records are
given more than one time stamp.

Notice that relationships are momentarily not considered in this process.

Restructuring the Entities: A technique based on the principles of
time-normalization can now be used to restructure the entities. The technique
consists of the following activities (applied on each of the entities):

Volatility Classes . Divide the attributes in so-called volatility classes. A volatility
class is a collection of attributes of an entity that are considered to change
together over time. Notice that, in practice, determining volatility classes will
probably require you to accept some compromises as to the likelihood that
attributes do indeed change together. Volatility classes should not be too small
(that is, volatility classes with only one or a few attributes are not very practical).
However, if attributes within a single volatility class have unrelated change
patterns, the resulting data model will include redundant information (see
Figure 86 on page 147).

146 Data Modeling Techniques for Data Warehousing

Figure 86. Redundancy Caused by Merging Volatil i ty Classes.

Time-Invariant Volatility Class . One of the volatility classes can represent
time-invariant attributes. Because keys are supposed to be time invariant, they
should be part of this class of attributes. All other attributes that are invariant or
are considered to be invariant (those whose history we decide not to keep track
of) should be made part of this class.

Volatility classes will be mapped onto records that represent parts of the original
entities. The time-invariant class will provide a very useful ″anchor″ record,
which can be used to relate all other history records of the original entity.

The time-invariant volatility class for the entity consists of DirectorID (the key),
DirectorName, Address, and Telephone (we have determined we are not
interested in the history for these). Notice that history records can be modeled
as dependent entity types.

Time-Variant Volatility Classes . Time-variant attributes should go in one or more
time-variant volatility classes. Notice that attributes of a single volatility class
are supposed to have a common lifespan history (they are assumed to change
together over time).

For the Movie entity in the MovieDB sample, three volatility classes have been
identified (see Figure 87 on page 148): One is the time-invariant class,
containing the MovieID (the key) and the Title and YearOfRelease attributes
(which are not supposed to change over time). For Budget values and
TicketSales, two separate classes are set up because both values are assumed
to have different patterns of change over time.

Chapter 8. Data Warehouse Modeling Techniques 147

Figure 87. Director and Movie Volatil i ty Classes.

Different volatility classes can be given different time stamps for recording
history records which are best suited for the purpose. For instance, Budget is
assumed to change infrequently and is therefore recorded using a state model
with a variable-duration interval time stamp. TicketSales, however, is expected
to bring in a new value each time a new record comes in. We have set up a
model for the TicketSales history that expects new TicketSales values to be
delivered to the warehouse each day.

Adding Entities for Transactions and Events: One of the typical characteristics of
a data warehouse is that it contains information about business transactions and
events. Transactions and events are of significant importance for many
information analysis processes. They can be used to group history records
together (for instance, all sales records that belong to a single customer sale,
including the mode of payment used by the customer for the sales transaction)
or provide the analyst a treasure of additional information to explain what
happened or why things happened.

The pure model transformation process has a serious flaw: It will not support
transactions and events that are not present in the original data model (a model
transformation process obviously does not invent new things). It is therefore
advisable to consider adding other entities to the historical model, primarily to
be able to capture business transactions and events.

Adding Relationships and the History of Relationship Changes Relationships in
the original data model can be handled in a way that is similar to our way of
handling entities. For each of the relationships in the original model, we suggest
investigating whether a history of the relationship itself should be kept or not.

If a history of changes should not be captured for a particular relationship, the
original relationship can simply be registered in the historical model as a
relationship between the time-invariant volatility classes (the anchor records). If
a history must be captured, the relationship must be turned into an association
between the original entities, and time stamps should be added as attributes of
the resulting association (see Figure 88 on page 149).

148 Data Modeling Techniques for Data Warehousing

Figure 88. Temporal Model for MovieDB.

Grouping Time-Variant Classes of Attributes: Temporal modeling using the
model transformation techniques presented above results in the creation of
several history records. To reduce the complexity of the resulting model, some
of the history records may be grouped together into larger construct (see
Figure 89).

Figure 89. Grouping of Time-Variant Classes of Attributes.

Notice that as a consequence of applying this grouping technique, redundancy is
introduced in the model.

Advanced Temporal Modeling Techniques: To conclude the coverage of
temporal modeling, we present below a survey of some of the most important
advanced temporal modeling techniques for data warehouses.

Adding Temporal Constraints to a Model: Constraints are important elements of
a conceptual model. Some constraints are captured in the model as structural
relationships between entities. Other constraints have to be specified explicitly
through a constraint specification language.

Chapter 8. Data Warehouse Modeling Techniques 149

Usually, the application developer uses constraints to implement the code for the
constraint in the application services. Data warehouses obviously do not have
such application logic. Here, the context is different.

Temporal constraints express a constraint between elements of a temporal
model. The constraint is temporal if it includes time-related aspects. As an
example (using the MovieDB model), a temporal constraint could express that
two directors cannot direct a given movie at the same time.

Although some temporal constraints could be coded in the model through
structural relationships, most temporal constraints quickly become too complex
for this. Temporal models therefore often are extended with temporal
constraints expressed through a functional language. These constraints are
important elements to consider when populating the data warehouse with newly
arriving data records or data change records. Temporal constraints are also
important for end users, as part of the metadata, because they can further help
end users in their information analysis activities.

Modeling Lifespan Histories of Database Objects: Knowing the lifespan history of
a database object can contribute considerably to the consistency of the data in
the data warehouse. It can also be of considerable help for end users in
performing their data analysis activities.

The lifespan history of a database object is a representation of the
representative activities that take place during the lifespan of an object. Typical
activities that are of interest to a data warehouse modeler are creation, change,
and deletion of the object. These activities obviously only form the basis of any
lifespan history. There are certainly other situations in which lifespan history
modeling may provide help for solving problems; for example, situations
involving changes to the keys in the operational databases.

Lifespan history modeling can easily evolve into an elaborate technique. In its
broad context, the technique is used to study the evolution over time of a given
database object. The results of this technique can be used to refine temporal
models.

Modeling Time-Variancy at the Schema Level: Modeling time-variancy at the
schema level is concerned with building models for the data warehouse that can
sustain adding or dropping attributes from the model, over time. We have seen
that the technique is required in some cases where hierarchies within
slow-varying dimensions are changed. The techniques whereby separate history
records are created for various volatility classes can be extended to provide
support for modeling schema level changes.

Some Conclusions: We have surveyed and illustrated several basic and
advanced techniques for temporal data modeling for the data warehouse. The
area of temporal modeling is quite complex, and few if any complete modeling
approaches are available. Modeling tools also provide only limited support for
temporal modeling. We advocate that temporal modeling be applied with a
serious touch of reality. Not only can the techniques be complex, the resulting
models also tend to become complex, especially when end users have to deal
with the models directly.

If such modeling techniques may turn out to be required for a particular project,
complexity for end users can be reduced by building a front-end data model for

150 Data Modeling Techniques for Data Warehousing

the end users that involves simpler temporal constructs, for example, a model
that uses the cumulative snapshot approach.

8.4.4.5 Selecting a Data Warehouse Modeling Approach
Dimensional modeling is a very powerful data warehouse modeling technique.
According to Ralph Kimball, ″dimensional modeling is the only viable technique
for databases that are designed to support end-user queries in a data
warehouse″ (Ralph Kimball, ″A Dimensional Modeling Manifesto,″ DBMS Online,
August 1997).

Dimensional modeling is different from ER modeling in that it focuses on
presenting data to end users much more intuitively and with a special emphasis
on supporting high-performance querying of potentially very large fact tables.

As we have illustrated in this chapter, star models play a particular role in the
context of dimensional modeling. Star models are very condensed and packed
representations of the dimensions used by end users in their query and analysis
activities. Because of their compactness, authors like Ralph Kimball consider
star models roughly speaking as the only good representations for supporting
end user information analysis processing.

Reasons for this are twofold. First, because star models represent the
dimensions as flat tables, end users are not confronted with complex dimension
structures in the form of normalized ER schemas. This gives them the
opportunity to work with the dimensional model without having to learn how to
interpret (complex) ER schemas correctly.

Second, because star schemas are flattened structures, end users and/or the
end-user tools do not have to join entities or tables in the dimensions to find and
use related data items for selecting and aggregating measures and facts. This
results in enhanced query performance.

Star modeling approaches therefore are considered by some to be the modeling
approaches that both simplify and improve the performance of end-user queries.

Snowflake models tend to offer more support for complex or more elaborate data
modeling problems. When a dimension incorporates several different parallel
aggregation paths, star models have difficulty in expressing reality in a concise
way. Also, when dimensions are varying in time, the slow varying temporal
aspects of dimensions cannot really nicely be represented by the flat dimension
tables of star schemas. There are several other modeling situations, all
involving elaborate modeling problems, where one can indeed recognize that
snowflake models are more appropriate than stars. (We do not imply that stars
cannot be used for these modeling situations; rather, stars do not directly
capture the essence of the problems.)

In the data warehouse modeling arena, practitioners are more and more often
confronted with a (fiercely) raging debate about how exactly a data warehouse
should be modeled. Although we would like to stay out of this debate as much
as possible, we cannot end this chapter without an attempt to provide a
synthesis consisting of a set of guidelines to set up a data warehouse modeling
approach that is suitable for medium- to large-scale data warehouse and data
mart modeling.

Our position is that there is room for any of the modeling approaches, be it
dimensional modeling using star or snowflake models or ER modeling involving

Chapter 8. Data Warehouse Modeling Techniques 151

temporal modeling for producing the historical data model for the data
warehouse. Successful data warehouse modeling requires that the techniques
be applied in the right context and within the bounds of their most suitable areas
of applicability.

Considerations for ER Modeling: ER modeling is the most popular approach for
modeling OLTP databases. In this area, it is challenged only by object-oriented
modeling approaches. ER modeling is also the de facto standard approach for
OLTP database model reengineering and database model integration. This
implies that ER modeling is the most suitable modeling approach for enabling
operational data stores. For the same reason, for producing source-driven data
warehouse models, ER modeling is the most suitable approach.

Despite the negative comments that dimensional modeling advocates have made
against ER modeling, it remains a viable approach for data warehouses and for
data marts. Because ER models can be very hard to read and interpret,
however, it should be expected that end users will not be skilled in interpreting
complex (possibly wall-sized) models of reality. ER models usually are too
technical for end users to work with, directly.

Considerations for Dimensional Modeling: It should be clear by now that
dimensional models can indeed provide very straightforward-looking
representations of the data used by end users in their information analysis
activities. This is obviously not sheer magic, because the modeling approach
was conceived for just that purpose.

Dimensional modeling can be recommended as the modeling approach to use,
in the following situations:

 1. When end-user requirements are analyzed and validated, because end users
are heavily involved in this process, the approach based on producing the
initial dimensional models described in this chapter offers an opportunity to
combine simplicity of the resulting model diagrams and power of the
modeling capabilities. Experience has shown that the approach is usable
with direct end-user involvement.

 2. When data models are produced for data marts that wil l be implemented
with OLAP tools that are based on the multidimensional data modeling
paradigm.

 3. When data warehouse models are produced for end-user queryable
databases. In this case, we recommend producing flattened star models,
unless the star modeling approach would lead to modeling solutions that do
not correspond to reality. End-user models should not simply be simple,
they should be intuitive and represent directly the perception of reality that
end users (who should be considered experts in their own business domain)
have.

Two-Tiered Data Modeling: Careful readers should have noticed that the above
mentioned guidelines do not imply that dimensional modeling is the one and
only approach for modeling data marts or that we proclaim star schemas as the
only possible or acceptable solutions for data marts.

Modeling a data mart with a broad scope of information coverage will almost
certainly require the use of different modeling approaches, because such marts
tend to have complex data models. For such projects, we propose using intuitive
star schemas for those parts of the data mart end users directly interact with

152 Data Modeling Techniques for Data Warehousing

(the ″end-user queryable databases″ within the data mart). The core model of
the data mart will probably involve an ER model or an elaborated snowflake
model.

We call such an approach a ″two-tiered data modeling approach,″ because it
results in a single, consistent data model that consists of two apparent ″layers″
in the model: one the end users are working with and one that represents the
core of the data mart. Both layers of a two-tiered data warehouse model must
be mapped.

Despite the inherent complexities of two-tiered data modeling, we do
recommend its use for broad scope data marts and for data warehouses.

Dimensional Modeling Supporting Drill Across: In his book, The Data
Warehouse Toolkit: Practical Techniques for Building Dimensional Data
Warehouses, Ralph Kimball illustrates yet another technique for building
dimensional models that span across subject areas. The technique relies on the
principle of an operation called ″drill ing across″ dimensions that are common to
multiple dimensional models.

Drill across requires that dimensions that span the dimensional models (and
have the same meaning) are physically identical. Kimball states that ″in order to
support drill-across applications, all constraints on dimension attributes must
evaluate to exactly the same set of dimensional entities from one database to
the next″ (Ralph Kimball, The Data Warehouse Toolkit, p. 84). If a given
dimension is common to two dimensional models and the dimension has an
identical layout in both models, the requirement quoted above obviously is
satisfied.

The drill-across dimensional modeling principle can be used for producing
models that enable end users to analyze several facts possibly belonging to
different subject areas, as long as the facts share their common dimensions.
This obviously implies that producing shareable, generic dimensional models is
a key part of the approach.

Shared, multidimensional data models can thus be produced as federations of
dimensional models, where each part of the federated model represents a
particular part of the business process.

This approach extends standard dimensional modeling beyond the individual
data analysis processing performed by identifiable groups of end users, but only
if the dimensions in the models are made conformant and can be consolidated.

If, in addition, facts in a dimensional model are recorded at low levels of
granularities, the resulting dimensional models are a very powerful and flexible
representation of the reality end users are querying and analyzing.

This modeling approach is also suitable for an architected approach based on
the ″dependent data mart″ principle (see Chapter 4, “Data Warehousing
Architecture and Implementation Choices” on page 15).

Modeling Corporate Historical Databases: A data warehouse is by definition a
historical or temporal database. Although OLTP databases may, in exceptional
cases, contain parts that capture history, there is a significant difference
between the two, and this difference stems from the difference in historical
perspective: OLTP databases rarely capture more than a few weeks or months of

Chapter 8. Data Warehouse Modeling Techniques 153

history, whereas data warehouses should be able to capture 3 to 5 to even 10
years of history, basically for all of the data that is recorded in the data
warehouse.

In one sense, a historical database is a dimensional database, the dimension
being time. In that sense, a historical data model could be developed using a
dimensional modeling approach. In the context of corporate data warehouse
modeling, building the backbone of a large-scale data warehouse, we believe
this makes no sense. In this case, the recommended approach is an ER
modeling approach that is extended with time variancy or temporal modeling
techniques, as described earlier in this chapter.

There are two basic reasons for the above-mentioned recommendation:

• Corporate historical models most often emerge from an inside-out approach,
using existing OLTP models as the starting point of the modeling process. In
such cases, reengineering existing source data models and integrating them
are vital processes. Adding time to the integrated source data model can
then be considered a model transformation process; suitable techniques for
doing this have been described in various sections of this chapter.

• Historical data models can become quite complicated. In some cases, they
are inherently unintuitive for end users anyway. In this case, one of the
basic premises for using dimensional modeling simply disappears.

Notice that this observation implies that end-users will find it difficult to query
such historical or temporal models. The complications of a historical data model
will therefore have to be hidden from end users, using tools or two-tiered data
modeling or an application layer.

A modeling approach for building corporate historical data models basically
consists of two major steps. The first step is to consolidate (existing) source
data models into a single unified model. The second step is to add the time
dimension to the consolidated model, very much according to the techniques
described in 8.4.4.4, “Temporal Data Modeling” on page 139.

In data warehousing, the whole process of constructing a corporate historical
data model must take place against the background of a corporate data
architecture or enterprise data model. The data architecture must provide the
framework to enhance consistency of the outcome of the modeling process. The
corporate data architecture should also maximize scalability and extensibility of
the historical model. The role of the data architect in this process obviously is of
vital importance.

154 Data Modeling Techniques for Data Warehousing

Chapter 9. Selecting a Modeling Tool

Modeling for data warehousing is significantly different from modeling for
operational systems. In data warehousing, quality and content are more
important than retrieval response time. Structure and understanding of the data,
for access and analysis, by business users is a base criterion in modeling for
data warehousing, whereas operational systems are more oriented toward use
by software specialists for creation of applications. Data warehousing also is
more concerned with data transformation, aggregation, subsetting, controlling,
and other process-oriented tasks that are typically not of concern in an
operational system. The data warehouse data model also requires information
about both the source data that will be used as input and how that data will be
transformed and flow to the target data warehouse databases. Thus, the
functions required for data modeling tools for data warehousing data modeling
have significantly different requirements from those required for traditional data
modeling for operational systems.

In this chapter we outline some of the functions that are of importance for data
modeling tools to support modeling for a data warehouse. The key functions we
cover are: diagram notation for both ER models and dimensional models,
reverse engineering, forward engineering, source to target mapping of data, data
dictionary, and reporting. We conclude with a list of modeling tools.

9.1 Diagram Notation
Both ER modeling and dimensional modeling notation must be available in the
data modeling tool. Most models for operational systems databases were built
with an ER modeling tool. Clearly, any modeling tool must, at a minimum,
support ER modeling notation. This is very important even for functions that are
not related to data warehousing, such as reverse engineering. In addition, it
may be desirable to extend, or aggregate, any existing data models to move
toward an enterprise data model. Although not a requirement, such a model
could be very useful as the starting point for developing the data warehouse
data model.

As discussed throughout this book, more and more data warehouse database
designs are incorporating dimensional modeling techniques. To be effective as
a data modeling tool for data warehouse modeling, a tool must support the
design of dimensional models.

9.1.1 ER Modeling
ER modeling notation supports entities and relationships. Relationships have a
degree and a cardinality, and they can also have attributes and constraints. The
number of different entities that participate in a relationship determines its
degree. The cardinality of a relationship specifies the number of occurrences of
one entity that can or must be associated with each occurrence of another entity.
Each relationship has a minimum and maximum cardinality in each direction of
the relationship. An attribute is a characteristic of an entity. A constraint is a
rule that governs the validity of the data manipulation operations, such as insert,
delete, and update, associated with an entity or relationship.

The data modeling tool should actually support several of the ER modeling
notations such as Chen, Integration Definition for Information Modeling,

 Copyright IBM Corp. 1998 155

Information Engineering, and Zachman notation. An efficient and effective data
modeling tool will enable you to create the data model in one notation and
convert it to another notation without losing the meaning of the model.

9.1.2 Dimensional Modeling
Dimensional modeling notation must support both the star and snowflake model
variations. Because both model variations are concerned with fact tables and
dimension tables, the notation must be able to distinguish between them. For
example, a color or special symbol could be used to distinguish the fact tables
from the dimensional tables. A robust data modeling tool would also support
notation for aggregation, as this is a key function in data warehousing. Even
though it may not be as critical as with operational systems, performance is
always an issue. Indexes have the greatest impact on performance, so the tool
must support the creation of keys for the tables and the selection of indexes.

9.2 Reverse Engineering
Reverse engineering is the creation of a model based on the source data in the
operational environment as well as from other external sources of data. Those
sources could include relational and nonrelational databases as well as other
types of file-oriented systems. Other sources of data would include indexed files
and flat files, as well as operational systems sources, such as COBOL copy
books and PL/1 libraries. The reverse engineered model may be used as the
basis for the data warehouse model or simply for information about the data
structure of the source data.

A good data warehouse data modeling tool is one that enables you to use
reverse engineering to keep the model synchronized with the target database.
Often the database administrator or a developer will make changes to the
database instead of the model because of time. When changes are made to the
target database, they are reflected in the data model through the modeling tool.

9.3 Forward Engineering
Forward engineering is the creation of the data definition language (DDL) for the
target tables in the data warehouse databases. The tool should be capable of
supporting both relational and multidimensional databases. At a minimum,
clearly, the tool must support the structure of the database management system
being used for the target data warehouse. It must be capable of generating the
DDL for the databases in that target data warehouse. The DDL should support
creation of the tables, views, indexes, primary keys, foreign keys, triggers, stored
procedures, table spaces, and storage groups.

The tool being used to create the data warehouse must enable you to execute
the DDL automatically in the target database or to save the DDL to a script file.
However, if the DDL is at least saved to a script file, you can then manually run
it. Support must include the capability to either generate the complete database
or incrementally generate parts of the database.

156 Data Modeling Techniques for Data Warehousing

9.4 Source to Target Mapping
Source to target mapping is the linking of source data in the operational systems
and external sources to the data in the databases in the target data warehouse.
The data modeling tool must enable you to specify where the data for the data
warehouse originates and the processing tasks required to transform the data
for the data warehouse environment. A good data modeling tool will use the
source to target mapping to generate scripts to be used by external programs,
or SQL, for the data transformation.

9.5 Data Dictionary (Repository)
The data dictionary, or repository, contains the metadata that describes the data
model. It is this metadata that contains all the information about the data
sources, target data warehouse databases, and all the processes required to
cleanse, transform, aggregate, and maintain the environment.

A powerful data modeling tool would include the following information about the
data in the model:

• Model names
• Model definition
• Model purpose
• Dimension names
• Dimension aliases
• Dimension definitions
• Dimension attribute names
• Dimension attribute aliases
• Dimension attribute definitions
• Dimension attribute data type
• Dimension attribute domain
• Dimension attribute derivation rules
• Fact names
• Fact aliases
• Fact definitions
• Measure names
• Measure aliases
• Measure definitions
• Measure data type
• Measure domain
• Measure derivation rules
• Dimension hierarchy data
• Dimension change rule data
• Dimension load frequency data
• Relationships among the dimensions and facts
• Business use of the data
• Applications that use the data
• Owner of the data
• Structure of data including size and data type
• Physical location of data
• Business rules

Chapter 9. Selecting a Modeling Tool 157

9.6 Reporting
Reporting is an important function of the data modeling tool and should include
reports on:

• Fact and dimension tables

• Specific facts and attributes in the fact and dimension tables

• Primary and foreign keys

• Indexes

• Metadata

• Statistics about the model

• Errors that exist in the model

9.7 Tools
The following is a partial list of some of the tools available in the marketplace at
the time this redbook was written. The presence of a tool in the list does not
imply that it is recommended or has all of the required capabilities. Use the list
as a starting point in your search for an appropriate data warehouse data
modeling tool.

• CAST DB-Builder (www.castsoftware.com)

• Cayenne Terrain (www.cayennesoft.com)

• Embarcadero Technologies ER/Studio (www.embarcadero.com)

• IBM VisualAge DataAtlas (www.software.ibm.com)

• Intersolv Excelerator II (www.intersolv.com)

• Logic Works ERwin (www.logicworks.com)

• Popkin System Architect (www.popkin.com)

• Powersoft PowerDesigner WarehouseArchitect (www.powersoft.com)

• Sterling ADW (www.sterling.com)

158 Data Modeling Techniques for Data Warehousing

Chapter 10. Populating the Data Warehouse

Populating is the process of getting the source data from operational and
external systems into the data warehouse and data marts (see Figure 90). The
data is captured from the operational and external systems, transformed into a
usable format for the data warehouse, and finally loaded into the data
warehouse or the data mart. Populating can affect the data model, and the data
model can affect the populating process.

Figure 90. Populating the Data Warehouse.

10.1 Capture
Capture is the process of collecting the source data from the operational
systems and other external sources. The source of data for the capture process
includes file formats and both relational and nonrelational database
management systems. The data can be captured from many types of files,
including extract files or tables, image copies, changed data files or tables,
DBMS logs or journals, message files, and event logs. The type of capture file
depends on the technique used for capturing the data. Data capturing
techniques include source data extraction, DBMS log capture, triggered capture,
application-assisted capture, time-stamp-based capture, and file comparison
capture (see Table 3 on page 160).

Source data extraction provides a static snapshot of source data as of a specific
point in time. It is sufficient to support a temporal data model that does not have
a requirement for a continuous history. Source data extraction can produce
extract files, tables, or image copies.

Log capture enables the data to be captured from the DBMS logging system. It
has minimal impact on the database or the operational systems that are
accessing the database. This technique does require a clear understanding of
the format of the log records and fairly sophisticated programming to extract
only the data of interest.

 Copyright IBM Corp. 1998 159

Triggers are procedures, supported by most database management systems,
that provide for the execution of SQL or complex applications on the basis of
recognition of a specific event in the database. These triggers can enable any
type of capture. The trigger itself simply recognizes the event and invokes the
procedure. It is up to the user to actually develop, test, and maintain the
procedure. This technique must be used with care because it is controlled more
by the people writing the procedures rather than by the database management
system. Therefore, it is open to easy access and changes as well as
interference by other triggering mechanisms.

Application-assisted capture involves programming logic in existing operational
system applications. This implies total control by the application programmer
along with all the responsibilities for testing and maintenance. Although a valid
technique, it is considered better to have application-assisted capture performed
by products developed specifically for this purpose, rather than to develop your
own customized application.

DBMS log capture, triggered capture, and application-assisted capture can
produce an incremental record of source changes, to enable use of a continuous
history model. Each of these techniques typically requires some other facility for
the initial load of data.

Time-stamp-based capture is a simple technique that involves checking a time
stamp value to determine whether the record has changed since the last
capture. If a record has changed, or a new record has been added, it is
captured to a file or table for subsequent processing.

A technique that has been used for many years is file comparison. Although it
may not be as efficient, it is an easy technique to understand and implement. It
involves saving a snapshot of the data source at a specific point in time of data
capture. At a later point in time, the current file is compared with the previous
snapshot. Any changes and additions that are detected are captured to a
separate file for subsequent processing and adding to the data warehouse
databases. Time-stamp-based capture, with its file comparison technique,
produces a record of the incremental changes that enables support of a
continuous history model. However, care must be exercised because all
changes to the operational data may not have been recorded. Changes can get
lost because more than one change of a record may occur between capture
points. Therefore, the history captured would be based on points in time rather
than a record of the continuous change history.

Table 3. Capture Techniques

Technique Initial Load Incremental Load - Each
Change

Incremental Load -
Periodic Change

Source data extraction X

DBMS log capture X

Triggered capture X

Application-assisted
capture

X

Time-stamp-based
capture

X

File comparison capture X

160 Data Modeling Techniques for Data Warehousing

10.2 Transform
The transform process converts the captured source data into a format and
structure suitable for loading into the data warehouse. The mapping
characteristics used to transform the source data are captured and stored as
metadata. This defines any changes that are required prior to loading the data
into the data warehouse. This process will help to resolve the anomalies in the
source data and produce a high quality data source for the target data
warehouse. Transformation of data can occur at the record level or at the
attribute level. The basic techniques include structural transformation, content
transformation, and functional transformation.

Structural transformation changes the structure of the source records to that of
the target database. This technique transforms data at the record level. These
transformations occur by selecting only a subset of records from the source
records, by selecting a subset of records from the source records and mapping
to different target records, by selecting a subset of different records from the
source records and mapping to the same target record, or by some combination
of each. If a fact table in the model holds data based on events, records should
be created only when the event occurs. However, if a fact table holds data
based on the state of the data, each time the data is captured a record should
be created for the target table.

Content transformation changes data values in the records. This technique
transforms data at the attribute level. Content transformation converts values by
use of algorithms or by use of data transformation tables.

Functional transformation creates new data values in the target records based
on data in the source records. This technique transforms data at the attribute
level. These transformations occur either through data aggregation or
enrichment. Aggregation is the calculation of derived values such as totals and
averages based on multiple attributes in different records. Enrichment combines
two or more data values and creates one or more new attributes from a single
source record or multiple source records that can be from the same or different
sources.

The transformation process may require processing through the captured data
several times because the data may be used to populate various records during
the apply process. Data values may be used in a fact table as a measure and
they may also be used to calculate aggregations. This may require going
through the source records more than once. The first pass would be to create
records for the fact table and the second to create records for the aggregations.

10.3 Apply
The apply process uses the files or tables created in the transform process and
applies them to the relevant data warehouse or data mart.

There are four basic techniques for applying data: load, append, constructive
merge, and destructive merge. Load replaces the existing data in the target
data warehouse tables with that created in the transform process. If the target
tables do not exist, the load process can create the table. Append loads new
data from the transform file or table to an already existing table by appending
the new data to the end of the existing data. Constructive merge appends the
new records to the existing target table and updates an end time value in the

Chapter 10. Populating the Data Warehouse 161

record whose state is being superseded. Destructive merge overwrites existing
records with new data.

10.4 Importance to Modeling
When the data warehouse model is being created, consideration must be given
to the plan for populating the data warehouse. Limitations in the operational
system data and processes can affect the data availability and quality. In
addition, the populating process requires that the data model be examined
because it is the blueprint for the data warehouse. The modeling process and
the populating process affect each other.

The data warehouse model determines what source data will be needed, the
format of the data, and the time interval of data capture activity. If the data
required is not available in the operational system, it will have to be created.
For example, sources of existing data may have to be calculated to create a
required new data element. In the case study, the Sale fact requires Total Cost
and Total Revenue. However, these values do not reside in the source data
model. Therefore, Total Cost and Total Revenue must be calculated. In this
case, Total Cost is calculated by adding the cost of each component, and Total
Revenue is calculated by adding all of the Order Line ′s Negotiated Unit Selling
Price times Quantity Ordered. The model may also affect the transform process.
For example, the data may need to be processed more than once to create all
the necessary records for the data warehouse.

The populating process may also influence the data warehouse model. When
data is not available or is costly to retrieve, it may have to be removed from the
model. Or, the timeliness of the data may have to change because of physical
constraints of the operational system, which will affect the time dimension in the
model. For example, in the case study, the Time dimension contains three types
of dates: Date, Week of Year, and Month of Year. If populating can occur only
on a weekly basis because of technology reasons, the granularity of the Time
dimension would have to be changed, and the Date attribute would have to be
removed.

162 Data Modeling Techniques for Data Warehousing

Appendix A. The CelDial Case Study

Before reviewing this case study, you should be familiar with the material
presented in Chapter 7, “The Process of Data Warehousing” on page 49 from
the beginning to the end of 7.3, “Requirements Gathering” on page 51. The
case study is designed to enable you to:

• Understand the information presented in a dimensional data model
• Create a dimensional data model based on a given set of business

requirements
• Define and document the process of extracting and transforming data from a

given set of sources and populating the target data warehouse

We begin with a definition of a fictional company, CelDial, and the presentation
of a business problem to be solved. We then define our data warehouse project
and the business needs on which it is based. An ER model of the source data is
provided as a starting point. We close the case study with a proposed solution
consisting of a dimensional model and the supporting metadata.

Please review the case study up to but not including the proposed solution.
Then return to 7.4, “Modeling the Data Warehouse” on page 53 where we
document the development of the solution. We include the solution in this
appendix for completeness only.

A.1 CelDial - The Company
CelDial Corporation started as a manufacturer of cellular telephones. It quickly
expanded to include a broad range of telecommunication products. As the
demand for, and size of, its suite of products grew, CelDial closed down
distribution channels and opened its own sales outlets.

In the past year CelDial opened new plants, sales offices, and stores in response
to increasing customer demand. With its focus firmly on expansion, the
corporation put little effort into measuring the effectiveness of the expansion.

CelDial′s growth has started to level off, and management is refocusing on the
performance of the organization. However, although cost and revenue figures
are available for the company as a whole, little data is available at the
manufacturing plant or sales outlet level regarding cost, revenue, and the
relationship between them.

To rectify this situation, management has requested a series of reports from the
Information Technology (IT) department. IT responded with a proposal to
implement a data warehouse. After consideration of the potential costs and
benefits, management agreed.

A.2 Project Definition
Senior management and IT put together a project definition consisting of the
following objective and scope:

Project Objective
To create a data warehouse to facilitate the analysis of cost and
revenue data for products manufactured and sold by CelDial.

 Copyright IBM Corp. 1998 163

Project Scope
The project shall be limited to direct costs and revenues associated
with products. Currently, CelDial′s manufacturing costs cannot be
allocated at the product level. Therefore, only component costs can
be included. At a future time, rules for allocation of manufacturing
and overhead costs may be created, so the data warehouse should
be flexible enough to accommodate future changes.

IT created a team consisting of one data analyst, one process analyst, one
manufacturing plant manager, and one sales region manager for the project.

A.3 Defining the Business Need
First, the project team defined what they needed to investigate in order to
understand the business need. To that end, the team identified the following
areas of interest:

• Life cycle of a product

• Anatomy of a sale

• Structure of the organization

• Defining cost and revenue

• What do the users want?

A.3.1 Life Cycle of a Product
The project team first studied the life cycle of a product. Each manufacturing
plant has a research group that tests new product ideas. Only after the
manufacturing process has been completely defined and approval for the new
product has been obtained is the product information added to the company ′s
records. Once the product information is complete, all manufacturing plants can
produce it.

A product has a base set of common components. Additional components are
added to the base set to create specific models of the product. Currently,
CelDial has 300 models of products. This number is fairly constant as the rate of
new models being created approximately equals the rate of old models being
discontinued. Approximately 10 models per week experience a cost or price
change. For each model of each product, a decision is made about whether or
not it is eligible for discounting. When a model is deemed eligible for
discounting, the salesperson may discount the price if the customer buys a large
quantity of the model or a combination of models. In a retail store (see A.3.2,
“Anatomy of a Sale” on page 165) the store manager must approve such a
discount.

The plant keeps an inventory of product models. When the quantity on hand for
a model falls below a predetermined level, a work order is created to cause
more of the model to be manufactured. Once a model is manufactured, it is
stored at the manufacturing plant until it is requested by a sales outlet.

The sales outlet is responsible for selling the model. When a decision is made
to stop making a model, data about the model is kept on file for six months after
the last unit of the model has been sold or discarded. Data about a product is
removed at the same time as data about the last model for the product is
removed.

164 Data Modeling Techniques for Data Warehousing

A.3.2 Anatomy of a Sale
There are two types of sales outlets: corporate sales office and retail store. A
corporate sales office sells only to corporate customers. Corporate customers
are charged the suggested wholesale price for a model unless a discount is
negotiated. One of CelDial′s 30 sales representatives is assigned to each
corporate customer. CelDial currently serves 3000 corporate customers. A
customer can place orders through a representative or by phoning an order desk
at a corporate sales office. Orders placed through a corporate sales office are
shipped directly from the plant to the customer. A customer can have many
shipping locations. It is possible for a customer to place orders from multiple
sales offices if the customer′s policy is to let each location do its own ordering.
The corporate sales office places the order with the plant closest to the customer
shipping location. If a customer places an order for multiple locations, the
corporate sales office splits it into an individual order for each location. A
corporate sales office, on average, creates 500 orders per day, five days per
week. Each order consists of an average of 10 product models.

A retail store sells over the counter. Unless a discount is negotiated, the
suggested retail price is charged. Although each product sale is recorded on an
order, the company does not keep records of customer information for retail
sales. A store can only order from one manufacturing plant. The store manager
is responsible for deciding which products will be stocked and sold from his or
her store. A retail store, on average, creates 1000 orders per day, seven days
per week. Each order consists of an average of two product models.

A.3.3 Structure of the Organization
It was clear to the team that understanding products and sales was not enough;
an understanding of the organization was also necessary. The regional sales
manager provided an up-to-date copy of the organization structure (see
Figure 91 on page 166).

A.3.4 Defining Cost and Revenue
The project team must clearly define cost and revenue in order for users to
effectively analyze those factors.

For each product model, the cost of each component is multiplied by the number
of components used to manufacture the model. The sum of results for all
components that make up the model is the cost of that model.

For each product model, the negotiated unit selling price is multiplied by the
quantity sold. The sum of results for all order lines that sell the model is the
revenue for that model.

When trying to relate the cost of a model to its revenue, the team discovered
that once a model was manufactured and added to the quantity on hand in
inventory, the cost of that unit of the model could not be definitively identified.
Even though the cost of a component is kept, it is only used to calculate a
current value of the inventory. Actual cost is recorded only in the company′s
financial system, with no reference to the quantity manufactured.

The result of this determination was twofold. First, the team requested that the
operational systems be changed to start recording the actual cost of a
manufactured model. However, both management and the project team
recognized that this was a significant change, and that waiting for it would

Appendix A. The CelDial Case Study 165

Figure 91. CelDial Organization Chart

severely impact the progress of the project. Therefore, and based on the fact
that component costs changed infrequently and by small amounts, the team
defined this rule: The revenue from the sale of a model is always recorded with
the current unit cost of the model, regardless of the cost of the model at the time
it was manufactured.

A.3.5 What Do the Users Want?
Because the objective of the project was to create a collection of data that users
could effectively analyze, the project team decided to identify a set of typical
questions users wanted the data to answer. Clearly, this would not be an
exhaustive list. The answer to one question would certainly determine what the
next question, if any, might be. As well, one purpose of the data warehouse is to
allow the asking of as yet unknown questions. If users simply want to answer a
rigid set of questions, creating a set of reports would likely fill the need. With
this in mind, the team defined the following set of questions:

 1. What is the average quantity on hand and reorder level this month for each
model in each manufacturing plant?

 2. What are the total cost and revenue for each model sold today, summarized
by outlet, outlet type, region, and corporate sales levels?

 3. What are the total cost and revenue for each model sold today, summarized
by manufacturing plant and region?

 4. What percentage of models are eligible for discounting, and of those, what
percentage are actually discounted when sold, by store, for all sales this
week? This month?

 5. For each model sold this month, what is the percentage sold retail, the
percentage sold corporately through an order desk, and the percentage sold
corporately by a salesperson?

 6. Which models and products have not sold in the last week? The last month?

166 Data Modeling Techniques for Data Warehousing

 7. What are the top five models sold last month by total revenue? By quantity
sold? By total cost?

 8. Which sales outlets had no sales recorded last month for each of the models
in each of the three top five lists?

 9. Which salespersons had no sales recorded last month for each of the models
in each of the three top five lists?

As well as being able to answer the above questions, the users want to be able
to review up to three complete years of data to analyze how the answers to
these questions change over time.

A.4 Getting the Data
Once the team defined the business need, the next step was to find the data
necessary to build a data warehouse that would support that business need. To
that end, the data analyst provided the ER model for all relevant data available
in the current operational systems (see Figure 92 on page 168).

As well, the data analyst provided the record layouts for two change transaction
logs: one for products and models and one for components and product
components.

The layout for product and model changes is:

Name Data Length Start
Type Position

Product ID Numeric 5 1
Model ID Numeric 5 6
Product Description Character 40 11
Suggested Wholesale Price Numeric(9,2) 5 51
Suggested Retail Price Numeric(9,2) 5 56
Eligible for Volume Discount Character 1 57

The layout for component and product component changes is:

Name Data Length Start
Type Position

Component ID Numeric 5 1
Product ID Numeric 5 6
Model ID Numeric 5 11
Component Description Character 40 16
Unit Cost Numeric(9,2) 5 56
Number of Components Numeric 5 61

A.5 CelDial Dimensional Models - Proposed Solution
We believe that CelDial′s needs can be met by creating and implementing two
dimensional models. We include them here for your consideration (see
Figure 93 on page 169 and Figure 94 on page 170).

Appendix A. The CelDial Case Study 167

Figure 92. Subset of CelDial Corporate ER Model

168 Data Modeling Techniques for Data Warehousing

Figure 93. Dimensional Model for CelDial Product Sales

Appendix A. The CelDial Case Study 169

Figure 94. Dimensional Model for CelDial Product Inventory

A.6 CelDial Metadata - Proposed Solution
No model is complete without its metadata. We include here a sample of
metadata that could be used for our proposed solution. It is not complete, but it
provides much of the needed metadata. It is left as an exercise for the reader to
analyze the sample and try to determine additional metadata required for a
complete solution.

• MODEL METADATA

Name: Inventory
Definition: This model contains inventory data for each product model

in each manufacturing plant, on a daily basis.
Purpose: The purpose of this model is to facilitate the analysis of

inventory levels.
Contact Person: Plant Manager
Dimensions: Manufacturing, Product, and Time
Facts: Inventory
Measures: Quantity on hand, Reorder level, Total cost, and Total

Revenue

170 Data Modeling Techniques for Data Warehousing

Name: Sales
Definition: This model contains sales data for each product model, on

each order, on a daily basis.
Purpose: The purpose of this model is to facilitate the analysis of

product sales.
Contact Person: Regional Sales Manager
Dimensions: Customer, Manufacturing, Product, Seller, and Time
Facts: Sale
Measures: Total cost, Total revenue, Total quantity sold, and

Discount amount

• FACT METADATA

Name: Inventory
Definition: This fact contains inventory data for each product model in

each manufacturing plant, on a daily basis.
Alias: None
Load Frequency: Daily
Load Statistics:

• Last Load Date: N/A
• Number of Rows Loaded: N/A

Usage Statistics:
• Average Number of Queries/Day: N/A
• Average Rows Returned/Query: N/A
• Average Query Runtime: N/A
• Maximum Number of Queries/Day: N/A
• Maximum Rows Returned/Query: N/A
• Maximum Query Runtime: N/A

Archive Rules: Data will be archived after 36 months, on a monthly basis.
Archive Statistics:

• Last Archive Date: N/A
• Date Archived to: N/A

Purge Rules: Data will be purged after 48 months, on a monthly basis.
Purge Statistics:

• Last Purge Date: N/A
• Date Purged to: N/A

Data Quality: Inventory levels may fluctuate throughout the day as more
stock is received into inventory from production and stock
is shipped out to retail stores and customers. The
measures for this fact are collected once per day and thus
reflect the state of inventory at that point in time, which is
the end of the working day for a plant.

Data Accuracy: The measures of this fact are 97.5% accurate at the point
in time they represent. This is based on the results of
physical inventories matched to recorded inventory levels.
No inference can be made from these measures as to
values at points in time not recorded.

Grain of Time: The measures of this fact represent inventory levels on a
daily basis.

Key: The key to an inventory fact is the combination of the keys
of its dimensions: Manufacturing, Product, and Time.

Appendix A. The CelDial Case Study 171

Key Generation Method: The time portion of the key is simply the date the
inventory level is being recorded for. The product key is
retrieved from the product translation table using the
product ID, model ID, and the inventory level date. The
manufacturing key is retrieved from the manufacturing
translation table using the region ID and plant ID.

Source:
• Name: Inventory Table
• Conversion Rules: Each row in each inventory table is

copied into the inventory fact on a daily basis.
• Selection Logic: All rows are selected from the

inventory table in each plant.

• Name: Sale Fact
• Conversion Rules: The rows representing sales of an

individual model produce from an individual plant are
summarized for each day and the result appended to
the relevant inventory fact.

• Selection Logic: All rows for the day the inventory fact
is being loaded with are selected from the sale fact.

Measures: Quantity on hand, Reorder level, Total cost, Total revenue
Dimensions: Manufacturing, Product, and Time
Subsidiary Facts: None
Contact Person: Plant Manager

Name: Sale
Definition: This fact contains sale data for each order which has been

recorded in the sales systems at each retail store and
corporate sales office.

Alias: None
Load Frequency: Daily
Load Statistics:

• Last Load Date: N/A
• Number of Rows Loaded: N/A

Usage Statistics:
• Average Number of Queries/Day: N/A
• Average Rows Returned/Query: N/A
• Average Query Runtime: N/A
• Maximum Number of Queries/Day: N/A
• Maximum Rows Returned/Query: N/A
• Maximum Query Runtime: N/A

Archive Rules: Data will be archived after 36 months, on a monthly basis.
Archive Statistics:

• Last Archive Date: N/A
• Date Archived to: N/A

Purge Rules: Data will be purged after 48 months, on a monthly basis.
Purge Statistics:

• Last Purge Date: N/A
• Date Purged to: N/A

Data Quality: It is possible for errors to be made by staff completing an
order. However, the numbers recorded represent what is
actually contracted with the customer and must be
honored.

Data Accuracy: The measures of this fact are 100% accurate in that they
represent what was actually sold.

172 Data Modeling Techniques for Data Warehousing

Grain of Time: The measures of this fact represent sales of a given
product on a given order.

Key: The key to a sale fact is the combination of the keys of its
dimensions: Customer, Manufacturing, Order, Product,
Seller, and Time. Note that Order does not have any
additional attributes and thus does not physically exist as
a dimension. Its primary function is to logically group
product sales for analysis.

Key Generation Method: The time portion of the key is simply the date the sale
takes place. The product key is retrieved from the product
translation table using the product ID, model ID, and the
sale date. The manufacturing key is retrieved from the
manufacturing translation table using the region ID and
plant ID. The seller key is retrieved from the seller
translation table using the region ID, outlet ID, and
salesperson ID. The customer key is retrieved from the
customer translation table using the customer ID and
customer location ID. The order ID from the original order
is used as the order key for the sale fact.

Source:
• Name: Order Table
• Conversion Rules: Rows in each order table are copied

into the sale fact on a daily basis.
• Selection Logic: Only rows for the current transaction

date are selected.

• Name: Product Dimension
• Conversion Rules: The product dimension is used to

calculate the cost for the product model on an order.
As well, the negotiated unit price on the order is
compared to the suggested retail or wholesale price
(based on the outlet type) to determine if a discount
was given. If so, the discount amount is calculated. If a
discount is given for a product not eligible for
discounting, a message is printed on an error report.

• Selection Logic: For each row being inserted into the
sale fact, the product data is accessed.

Measures: Total cost, Total revenue, Total quantity sold, and Discount
amount

Dimensions: Customer, Manufacturing, Order, Product, Seller, and Time
Subsidiary Facts: Inventory: the inventory fact contains daily aggregates for

cost and revenue at the product and plant level of
granularity.

Contact Person: Plant Manager

• DIMENSION METADATA

Name: Customer
Definition: A customer is any person or organization who purchases

goods from CelDial. A customer may be associated with
many business locations.

Alias: None

Appendix A. The CelDial Case Study 173

Hierarchy: Data can be summarized at two levels for a customer. The
lowest level of summarization is the customer ship-to
address. Data from each location (ship-to address) can be
further rolled up to summarize for an entire customer.

Change Rules: New customer locations are inserted as new rows into the
dimension. Changes to existing locations are updated in
place.

Load Frequency: Daily
Load Statistics:

• Last Load Date: N/A
• Number of Rows Loaded: N/A

Usage Statistics:
• Average Number of Queries/Day: N/A
• Average Rows Returned/Query: N/A
• Average Query Runtime: N/A
• Maximum Number of Queries/Day: N/A
• Maximum Rows Returned/Query: N/A
• Maximum Query Runtime: N/A

Archive Rules: Customer data is not archived.
Archive Statistics:

• Last Archive Date: N/A
• Date Archived to: N/A

Purge Rules: Customers who have not purchased any goods from
CelDial in the past 48 months will be purged on a monthly
basis.

Purge Statistics:
• Last Purge Date: N/A
• Date Purged to: N/A

Data Quality: When a new customer is added a search is done to
determine if we already do business with another location.
In rare cases separate branches of a customer are
recorded as separate customers because this check fails.
Until such time as the customer notices separate locations
dealing with us such occurrences remain as originally
recorded.

Data Accuracy: Incorrect association of locations of a common customer
occur in less than .5% of our customer data.

Key: The key to the customer dimension consists of a system
generated number.

Key Generation Method: When a customer is copied from the operational system,
the translation table is checked to determine if the
customer already exists in the warehouse. If not, a new
key is generated and the key along with the customer ID
and location ID are added to the translation table. If the
customer and location already exist, the key from the
translation table is used to determine which customer in
the warehouse to update.

Source:
• Name: Customer Table
• Conversion Rules: Rows in each customer table are

copied on a daily basis. For existing customers, the
name is updated. For new customers, once a location
is determined, the key is generated and a row
inserted. Before the update/insert takes place a check
is performed for a duplicate customer name. If a

174 Data Modeling Techniques for Data Warehousing

duplicate is detected, a sequence number is appended
to the name. This check is repeated until the name and
sequence number combination are determined to be
unique. Once uniqueness has been confirmed, the
update/insert takes place.

• Selection Logic: Only new or changed rows are
selected.

• Name: Customer Location Table
• Conversion Rules: Rows in each customer location

table are copied on a daily basis. For existing
customer locations, the ship-to address is updated. For
new customer locations, the key is generated and a
row inserted.

• Selection Logic: Only new or changed rows are
selected.

Attributes:
• Name: Customer Key
• Definition: This is an arbitrary value assigned to

guarantee uniqueness for each customer and location.
• Alias: None
• Change Rules: Once assigned, the values of this

attribute never change.
• Data Type: Numeric
• Domain: 1 - 999,999,999
• Derivation Rules: A system generated key of the

highest used customer key +1 is assigned when
creating a new customer and location entry.

• Source: System Generated

• Name: Name
• Definition: This is the name by which a customer is

known to CelDial.
• Alias: None
• Change Rules: When a customer name changes it is

updated in place in this dimension.
• Data Type: Character(30)
• Domain:
• Derivation Rules: To ensure the separation of data for

customers who have the same name but are not part
of the same organization, a number will be appended
to names where duplicates exist.

• Source: Name in Customer Table

• Name: Ship-to Address
• Definition: This is an address where CelDial ships

goods to a corporate customer. It is possible for a
corporate customer to have multiple ship-to locations.
For retail customers no ship-to address is kept.
Therefore, there can only be one entry in the customer
dimension for a retail customer.

• Alias: None
• Change Rules: When a ship-to address changes it is

updated in place in this dimension.
• Data Type: Character(60)

Appendix A. The CelDial Case Study 175

• Domain: All valid addresses within CelDial ′s service
area.

• Derivation Rules: The ship-to address is a direct copy
of the source.

• Source: Ship-to Address in Customer Location Table
Facts: Sale
Measures: Total cost, Total revenue, Total quantity sold, and Discount

amount
Subsidiary Dimensions: None
Contact Person: Vice-president of Sales and Marketing

Name: Manufacturing
Definition: The manufacturing dimension represents the

manufacturing plants owned and operated by CelDial.
Plants are grouped into geographic regions.

Alias: None
Hierarchy: Data can be summarized at two levels for manufacturing.

The lowest level of summarization is the manufacturing
plant. Data from each plant can be further rolled up to
summarize for an entire geographic region.

Change Rules: New plants are inserted as new rows into the dimension.
Changes to existing plants are updated in place.

Load Frequency: Daily
Load Statistics:

• Last Load Date: N/A
• Number of Rows Loaded: N/A

Usage Statistics:
• Average Number of Queries/Day: N/A
• Average Rows Returned/Query: N/A
• Average Query Runtime: N/A
• Maximum Number of Queries/Day: N/A
• Maximum Rows Returned/Query: N/A
• Maximum Query Runtime: N/A

Archive Rules: Manufacturing plant data is not archived.
Archive Statistics:

• Last Archive Date: N/A
• Date Archived to: N/A

Purge Rules: Manufacturing plants that have been closed for at least 48
months will be purged on a monthly basis.

Purge Statistics:
• Last Purge Date: N/A
• Date Purged to: N/A

Data Quality: There are no opportunities for error or misinterpretation of
manufacturing plant data.

Data Accuracy: Manufacturing plant data is 100% accurate.
Key: The key to the manufacturing plant dimension consists of a

system generated number.
Key Generation Method: When a manufacturing plant is copied from the

operational system, the translation table is checked to
determine if the plant already exists in the warehouse. If
not, a new key is generated and the key along with the
plant ID and region ID are added to the translation table. If
the plant and region already exist, the key from the

176 Data Modeling Techniques for Data Warehousing

translation table is used to determine which plant in the
warehouse to update.

Source:
• Name: Manufacturing Plant Table
• Conversion Rules: rows in each plant table are copied

on a daily basis. For existing plants, the plant name is
updated. For new plants, once a region is determined,
the key is generated and a row inserted.

• Selection Logic: Only new or changed rows are
selected.

• Name: Manufacturing Region Table
• Conversion Rules: Rows in each region table are

copied on a daily basis. For existing regions, the
region name is updated for all plants in the region.
For new regions, the key is generated and a row
inserted.

• Selection Logic: Only new or changed rows are
selected.

Attributes:
• Name: Manufacturing Key
• Definition: This is an arbitrary value assigned to

guarantee uniqueness for each plant and region.
• Alias: None
• Change Rules: Once assigned, the values of this

attribute never change.
• Data Type: Numeric
• Domain: 1 - 999,999,999
• Derivation Rules: system generated key of the highest

used manufacturing key + 1 is assigned when
creating a new plant and region entry.

• Source: System Generated

• Name: Region Name
• Definition: This is the name CelDial uses to identify a

geographic region for the purpose of grouping
manufacturing plants.

• Alias: None
• Change Rules: When a region name changes it is

updated in place in this dimension.
• Data Type: Character(30)
• Domain:
• Derivation Rules: The region name is a direct copy of

the source
• Source: Name in Manufacturing Region Table

• Name: Plant Name
• Definition: This is the name CelDial uses to identify an

individual manufacturing plant.
• Alias: None
• Change Rules: When a plant name changes it is

updated in place in this dimension.
• Data Type: Character(30)
• Domain:
• Derivation Rules: The plant name is a direct copy of

the source

Appendix A. The CelDial Case Study 177

• Source: Name in Manufacturing Plant Table
Facts: Inventory and Sale
Measures: Quantity on hand, Reorder level, Total cost, Total revenue,

Total quantity sold, and Discount amount
Subsidiary Dimensions: None
Contact Person: Plant Manager

Name: Time
Definition: The time dimension represents the time frames used by

CelDial for reporting purposes.
Alias: None
Hierarchy: The lowest level of summarization is a day. Data for a

given day can be rolled up into either weeks or months.
Weeks cannot be rolled up into months.

Change Rules: Once a year the following year′s dates are inserted as new
rows into the dimension. There are no updates to this
dimension.

Load Frequency: Annually
Load Statistics:

• Last Load Date: N/A
• Number of Rows Loaded: N/A

Usage Statistics:
• Average Number of Queries/Day: N/A
• Average Rows Returned/Query: N/A
• Average Query Runtime: N/A
• Maximum Number of Queries/Day: N/A
• Maximum Rows Returned/Query: N/A
• Maximum Query Runtime: N/A

Archive Rules: Time data is not archived.
Archive Statistics:

• Last Archive Date: N/A
• Date Archived to: N/A

Purge Rules: Time data more than 4 years old will be purged on a
yearly basis.

Purge Statistics:

• Last Purge Date: N/A

• Date Purged to: N/A

Data Quality: There are no opportunities for error or misinterpretation of
time data.

Data Accuracy: Time data is 100% accurate.
Key: The key to the time dimension is a date in YYYYMMDD

(year-month-day) format.
Key Generation Method: The date in a row is used as the key.
Source:

• Name: Calendar spreadsheet maintained by database
administrator.

• Conversion Rules: Rows in the calendar spreadsheet
represent one calendar year. All the rows in the
spreadsheet are loaded into the dimension annually.

• Selection Logic: All rows are selected.
Attributes:

• Name: Time Key
• Definition: This is the date in YYYYMMDD format.

178 Data Modeling Techniques for Data Warehousing

• Alias: None
• Change Rules: Once assigned, the values of this

attribute never change.
• Data Type: Numeric
• Domain: valid dates
• Derivation Rules: This date is a direct copy from the

source.
• Source: Numeric Date in Calendar spreadsheet

• Name: Date
• Definition: This is the descriptive date equivalent to the

numeric date used as the key to this dimension. It is
the date used on reports and to limit what data
appears on a report. It is in the format MMM DD,
YYYY.

• Alias: None
• Change Rules: Once assigned, the values of this

attribute never change.
• Data Type: Character(12)
• Domain: valid dates in descriptive format
• Derivation Rules: This date is a direct copy from the

source.
• Source: Descriptive Date in Calendar spreadsheet

• Name: Week of Year
• Definition: Each day of the year is assigned to a week

for reporting purposes. Because years don ′ t divide
evenly into weeks it is possible for a given day near
the beginning or end of a calendar year to fall into a
different year for weekly reporting purposes. The
format is WW-YYYY.

• Alias: None
• Change Rules: Once assigned, the values of this

attribute never change.
• Data Type: Character(7)
• Domain: WW is 1-52. YYYY is any valid year.
• Derivation Rules: This date is a direct copy from the

source.
• Source: Week of Year in Calendar spreadsheet

Facts: Inventory and Sale
Measures: Quantity on hand, Reorder level, Total cost, Total revenue,

Total quantity sold, and Discount amount
Subsidiary Dimensions: None
Contact Person: Data Warehouse Administrator

• MEASURE METADATA

Name: Total Cost
Definition: This is the cost of all components used to create product

models that have been sold.
Alias: None
Data Type: Numeric (9,2)
Domain: $0.01 - $9,999,999.99.
Derivation Rules: The total cost is the product of the unit cost of a product

model and quantity of the product model sold.

Appendix A. The CelDial Case Study 179

Usage Statistics:
• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: This figure only represents the cost of components. No
attempt is made to record labor or overhead costs. As
well, cost is calculated using the current cost at the time a
product model is sold. No attempt is made to determine
when the model was produced and the cost at that time.

Data Accuracy: We estimate that the cost reported for a product model is
accurate to within +/- .5%.

Facts: Inventory and Sale
Dimensions: Customer, Manufacturing, Product, Seller, and Time

Name: Total Revenue
Definition: This is the amount billed to customers for product models

that have been sold.
Alias: None
Data Type: Numeric (9,2)
Domain: $0.01 - $9,999,999.99.
Derivation Rules: The total revenue is the product of the negotiated selling

price of a product model and quantity of the product model
sold.

Usage Statistics:
• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: This figure only represents the amount billed for product
models sold. Defaults on accounts receivable are not
considered.

Data Accuracy: Defaults on accounts receivable are insignificant for the
purpose of analyzing product sales trends and patterns.

Facts: Inventory and Sale
Dimensions: Customer, Manufacturing, Product, Seller, and Time

Name: Total Quantity Sold
Definition: This is the number of units of a product model that have

been sold.
Alias: None
Data Type: Numeric (7,0)
Domain: 1 - 9,999,999.
Derivation Rules: This is taken directly from the quantity sold on an order

line.
Usage Statistics:

• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: This figure only represents the quantity billed for product
models sold. Defaults on accounts receivable are not
considered.

Data Accuracy: Defaults on accounts receivable are insignificant for the
purpose of analyzing product movement trends and
patterns.

Facts: Sale
Dimensions: Customer, Manufacturing, Product, Seller, and Time

180 Data Modeling Techniques for Data Warehousing

Name: Discount Amount
Definition: This is the difference between the list price for a product

model and the actual amount billed to the customer.
Alias: None
Data Type: Numeric (9,2)
Domain: $0.01 - $9,999,999.99.
Derivation Rules: The discount amount is the product of the quantity of the

product model sold and the difference between the
suggested wholesale or retail price of the product model
and the negotiated selling price. The suggested wholesale
price is used if the model is sold through a corporate sales
office. The suggested retail price is used if the model is
sold through a retail store.

Usage Statistics:
• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: A study of the discount amounts recorded has concluded
that the data is being recorded correctly. However, it is
possible that discounts are being offered at inappropriate
times.

Data Accuracy: Discount amounts are 100% accurate with respect to
actual discounts given.

Facts: Sale
Dimensions: Customer, Manufacturing, Product, Seller, and Time

Name: Quantity On Hand
Definition: This is the number of complete units of a product model

available for distribution from a manufacturing plant at a
specific point in time (the end of a business day).

Alias: None
Data Type: Numeric (7,0)
Domain: 1 - 9,999,999.
Derivation Rules: The quantity on hand for each product model for each

manufacturing plant is recorded directly from the
operational inventory records at the end of each business
day.

Usage Statistics:
• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: The quantity of a product produced and/or shipped on a
given business day varies greatly. Therefore, no
conclusions can be drawn about inventory levels at points
in time other than those actually recorded.

Data Accuracy: The quantity on hand is 100% accurate as of the point in
time recorded and only at that point in time.

Facts: Inventory
Dimensions: Manufacturing, Product, and Time

Name: Reorder Level
Definition: The reorder level is used to determine when more of a

product model should be produced. More of a model will
be produced when the quantity on hand for a model falls to
or below the reorder level.

Alias: None

Appendix A. The CelDial Case Study 181

Data Type: Numeric (7,0)
Domain: 1 - 9,999,999.
Derivation Rules: The reorder level for each product model for each

manufacturing plant is recorded directly from the
operational inventory records at the end of each business
day.

Usage Statistics:
• Average Number of Queries/Day: N/A
• Maximum Number of Queries/Day: N/A

Data Quality: Users in the manufacturing plants report that reorder
levels are reviewed infrequently. Because of this, workers
responsible for initiating new production of product model
will often disregard relevant warnings and plan production
by ″gut feel″.

Data Accuracy: The reorder level is 100% accurate as of the point in time
recorded and only at that point in time.

Facts: Inventory
Dimensions: Manufacturing, Product, and Time

• SOURCE METADATA

Name: Order Table
Extract Method: The table is searched for orders recorded on the current

transaction date. These orders are extracted.
Extract Schedule: The extract is run daily after the close of the business day.
Extract Statistics:

• Last Extract Date: N/A
• Number of Rows Extracted: N/A

• EXTRACT METADATA

Name: Product and Component Extract
Extract Schedule: The extract is run daily after the close of the business day

and prior to the Order and Inventory Extract.
Extract Method: The transaction log is searched for changes to the Product,

Product Model, Product Component, and Component
tables. These changes are extracted.

Extract Steps: See 7.5.4.3, “Getting from Source to Target” on page 74.
Extract Statistics:

• Last Extract Date: N/A
• Number of Rows Extracted: N/A

182 Data Modeling Techniques for Data Warehousing

Appendix B. Special Notices

This publication is intended to guide data architects, database administrators,
and developers in the design of data models for data warehouses and data
marts. The information in this publication is not intended as the specifications of
any programming interfaces that are provided by any IBM products. See the
PUBLICATIONS section of the IBM Programming Announcement for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(″vendor″) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

 Copyright IBM Corp. 1998 183

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AS/400 BookManager
DB2 IBM
IMS Information Warehouse
PROFS RS/6000
System/390 VisualAge

184 Data Modeling Techniques for Data Warehousing

Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for
more discussion on topics covered in this redbook.

C.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 189.

• Information Warehouse in the Retail Industry, GG24-4342

• Information Warehouse in the Finance Industry, GG24-4340

• Information Warehouse in the Insurance Industry, GG24-4341

• Data Warehouse Solutions on the AS/400, SG24-4872

• Data Where You Need It, The DPROPR Way, GG24-4492

C.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

C.3 Other Publications
The following publications are also relevant as information sources:

C.3.1 Books
Adriaans, P., and D. Zaantinge. Data Mining. Addison-Wesley, 1996.

Aiken, P. Data Reverse Engineering: Slaying the Legacy Dragon .
McGraw-Hill, 1995.

Barquin, R., and H. Edelstein (eds.). Building, Using, and Managing the
Warehouse. Prentice Hall, 1997.

Bischoff, J., and T. Alexander (eds.). Data Warehouse: Practical Advice from
the Experts. Prentice Hall, 1997.

Brackett, M. H. Data Sharing. John Wiley & Sons, 1994.

Brodie, M. L., and M. Stonebreaker. Migrating Legacy Systems: Gateways,
Interfaces, and the Incremental Approach. Morgan Kaufmann, 1995.

Corey, M., and M. Abbey. Oracle Data Warehousing. McGraw-Hill, 1996.

 Copyright IBM Corp. 1998 185

Devlin, B. Data Warehousing: From Architecture to Implementation.
Addison-Wesley, 1996.

Gill, H. S., and P. C. Rao. The Official Client/Server Computing Guide to Data
Warehousing. QUE Corp., 1996.

Hammergren, T. C. Data Warehousing on the Internet. ITC Press, 1997.

Inmon, W. H. Building the Data Warehouse. Wiley-Qed, 1990.

___________. Information Systems Architecture. Prentice Hall, 1992.

___________. Using DB2 to Build Decision Support Systems. Wiley-Qed,
1990.

Inmon, W. H., and R. D. Hackathorn. Using the Data Warehouse. Wiley-Qed,
1994.

Inmon, W. H., Imhoff, C., and G. Battas. Building the Operational Data Store.
John Wiley & Sons, 1996.

Inmon, W. H., Welch, J. D., and K. Glassey. Managing the Data Warehouse.
John Wiley & Sons, 1996.

Kelly, B. W. AS/400 Data Warehousing: The Complete Implementation Guide.
CBM Books, 1996.

Kelly, S. Data Warehousing: The Route to Mass Customization. John Wiley
& Sons, 1995.

Kimball, R. The Data Warehouse Toolkit: Practical Techniques for Building
Data Warehouses. John Wiley & Sons, 1996.

Mattson, R. Data Warehousing: Strategies, Technologies and Techniques.
McGraw-Hill, 1996.

O′Neil, P. Database: Principles, Programming, Performance. Morgan
Kaufmann, 1994.

Parsaye, K., and M. Chignell. Intelligent Database Tools and Applications.
John Wiley & Sons, 1993.

Poe, V. Building a Data Warehouse for Decision Support. Prentice Hall,
1996.

Redman, T. C. Data Quality for the Information Age. Artech House, 1996.

Sprague, R. H. Decision Support for Management. Prentice Hall, 1996.

Thomsen, E., and G. Spofford. OLAP Solutions: Building Multidimensional
Information Systems. John Wiley & Sons, 1997.

Data Warehousing and Decision Support: The State of the Art. Spiral Books,
1995.

C.3.2 Journal Articles, Technical Reports, and Miscellaneous Sources
Agrawal, R., et al., “Modeling Multidimensional Databases,” IBM Research
Report, Almaden Research Center.

Appleton, E. L., “Use Your Data Warehouse to Compete,” Datamation, May
1996.

Codd, E. F., Codd, S. B., and C. T. Salley, “Providing OLAP to User-Analysts,”
E. F. Codd Associates, 1993.

Darling, C. B., “How to Integrate Your Data Warehouse,” Datamation, May
1996.

186 Data Modeling Techniques for Data Warehousing

Erickson, C. G., “Multidimensionalism and the Data Warehouse,” The Data
Warehouse Conference, February 1995.

Foley, J., and B. DePompa, “Data Marts: Low Cost, High Appeal,” Information
Week, March 1996.

Gordon, K. I., “Data Warehouse Implementation,” 1996.

____________, “Data Warehouse Implementation Plan,” 1996.

____________, “The Why of Data Standards - Do You Really Know Your
Data?,” 1996.

Graham, S., Coburn, D., and Carsten Olesen, “The Foundations of Wisdom: A
Study of the Financial Impact of Data Warehousing,” IDC Special Edition
White Paper, 1996.

Inmon, W. H., “Creating the Data Warehouse Data Model from the Corporate
Data Model,” PRISM Tech Topics, Vol. 1, No. 2.

___________, “Data Relationships in the Data Warehouse,” PRISM Tech
Topics, Vol. 1, No. 5.

___________, “Information Management: Charting the Course,” Data
Management Review, May 1996.

___________, “Loading Data into the Warehouse,” PRISM Tech Topics, Vol.
1, No. 11.

___________, “Meta Data in the Data Warehouse,” PRISM Tech Topics, Vol. 1,
No. 6.

___________, “Snapshots in the Data Warehouse,” PRISM Tech Topics, Vol. 1,
No. 4.

___________, “Time-variant Data Structures,” PRISM Tech Topics, Vol. 1, No.
9.

___________, “What Is a Data Warehouse?,” PRISM Tech Topics, Vol. 1, No.
1.

Kimball, R., “Data Warehouse Role Models,” DBMS Online, August 1997.

___________, “A Dimensional Modeling Manifesto,” DBMS Online, August
1997.

Lambert, B., “Data Modeling for Data Warehouse Development,” Data
Management Review, February 1996.

Raden, N., “Maximizing Your Data Warehouse,” parts 1 and 2, Information
Week, March 1996.

Snoddgrass, R., “Temporal Databases: Status and Research Directions,”
SIGMOD Record, Vol. 19, No. 4, December 1990.

Teale, P., “Data Warehouse Environment: End-to-End Blueprint,” presentation
material, IBM UK Ltd. 1996.

_________, “Data Warehouse Environment: System Architecture,”
presentation material, IBM UK Ltd., 1996.

Appendix C. Related Publications 187

188 Data Modeling Techniques for Data Warehousing

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1998 189

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

190 Data Modeling Techniques for Data Warehousing

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 191

192 Data Modeling Techniques for Data Warehousing

Glossary

Additive measure . Measure of a fact that can be
added across all dimensions.

Associative entity . An entity created to resolve a
many-to-many relationship into two one-to-many
relationships.

Attribute . A characteristic of an entity.

Business subject area . Represents a particular
function or area within an enterprise whose processes
and activities can be supported by a defined set of
data elements.

Candidate key . When an entity has more than one
possible key, each key is referred to as a candidate
key.

Cube . Another term for a fact table. It can represent
“n” dimensions, rather than just three (as implied by
the name).

Data mart . A subject-oriented, integrated,
time-variant collection of data to enable
decision-making for a specific group of users.

Data mining . The use of a computer application to
search for and discover new insights about the
business and significant relationships among the data
in the data warehouse.

Data model . A representation of data, its definition,
characteristics, and relationships.

Data warehouse . A subject-oriented, integrated,
time-variant collection of data to enable
decision-making across a disparate group of users.

Data warehousing . The design and implementation of
processes, tools, and facilities to manage and deliver
complete, timely, accurate, and understandable
information for decision-making.

Data warehouse data model . A data model that is
structured to represent data in a data warehouse or a

data mart. Some characteristics that distinguish this
from other data models are source to target mapping,
extract rules, extract schedules, and transformation
rules.

Entity . A person, place, thing, or event of interest to
the organization. Each entity in a data model is
unique.

Fact . A collection of related attributes, consisting of
measures and context data. It typically represents a
business item, transaction, or event that can be used
in analyzing the business or business processes.

Fact table . A collection of facts defined by the same
dimensions and measures.

Foreign key . An attribute or set of attributes that
refers to the primary key of another entity.

Grain . The fundamental atomic level of data to be
represented in the fact table. Typical grains that
could be used, when considering time, would be day,
week, month, year, and so forth.

Key . An attribute or set of attributes that uniquely
identifies an entity.

Measure . A numeric attribute of a fact representing
the performance or behavior of its dimensions.

Nonadditive measure . Measure of a fact that cannot
be added across any of its dimensions. A typical
example of a nonadditive measure is a percentage.

Primary key . The candidate key most commonly
used to identify an entity.

Relationship . The business rule that associates
entities.

Semiadditive measure . Measure of a fact that can be
added across only some of its dimensions. A typical
example of a semiadditive measure is a balance.

 Copyright IBM Corp. 1998 193

194 Data Modeling Techniques for Data Warehousing

Index

A
addit ivi ty 58, 60
aggregation paths 119, 124
architecture

global architecture 15
global architecture expensive 17
independent architecture 17
independent architecture complex 18
interconnected architecture 18

associative entity 37
attr ibute 38

B
bibliography 185
business concepts 25
business directory 105
business entity 26

C
candidate key 37
capture techniques 160
cardinality 38
CAST DB-Builder 158
Cayenne Terrain 158
CelDial case study 163—182
constraints 40
continuous history model 141
cube

definit ion 43
dicing 45
slicing 45

cumulative snapshot 141

D
data

capture techniques 73
cleaning 72
granulari ty 28, 58
logical partit ioning 31
mult igranulari ty 30
partit ioning criteria 31
physical partit ioning 30
summarization 30
transforming 72
types of 23

data mart
definit ion 15, 87
development process 50
different modeling techniques needed 152
modeling for 86
populating in top down implementation 19

data mart (continued)
problems with independent 18

data mining
contrasted with other techniques 13
data modeling 77
definit ion 12
development process 78

data warehousing
and data mart 15
apply 161
capture 159
compared to decision support 6
definit ion 5, 23
development process 49
how to choose architecture 15
importance of modelling 162
modeling different from OLTP 84
modeling requirements for 85
OLTP keys in 133—135
reasons for 5
requirements different from tradit ional

development 51
source-driven requirements 52
transform 161
user-driven requirements 53

degenerate keys 74, 115
derivation functions 41
derived attr ibutes 41
derived data 24
dimension 55

adding time dimensions 57
definit ion 11, 42
degenerate 63
determining candidates 99
handling changes in 137
keys 108
process overview 89
representat ive 109
requirements analysis 89
requirements gathering 89
requirements modeling 91
requirements validation 90
role in dimensional modeling 111
sequence of determination 98
slow-varying 133, 135

dimension keys 108
dimension tables 46
dimensional modeling

and OLAP 42, 44
compared to entity relationship modeling 46, 70
cube 43
definit ion 42
development process 55
dicing 45

 Copyright IBM Corp. 1998 195

dimensional modeling (continued)
dimension 42, 55
dril l down 44
fact 42, 58
hypercube 43
measure 43, 55
requirements analysis 96
requirements gathering 92
requirements modeling 117
requirements validation 115
roll up 44
savings with snowflake model 47
slicing 45
snowflake model 46
star model 46
star versus snowflake models 151
support in tools 156
variable 43
when to use 152

domain 39
dril l across 153
dril l down 12, 44

E
Embarcadero Technologies ER/Studio 158
enterprise data model

benefits of 27
business concepts 25
definit ion 25
problems with 27
subject area 26

entity 37
entity relationship modeling

and operational systems 152
associative entity 37
attr ibute 38
cardinality 38
compared to dimensional modeling 46, 70
constraints 40
definit ion 35
derivation functions 41
derived attr ibutes 41
development process 54
domain 39
entity 37
example 38, 54
normalization 39
relationship 38
subtype 39
supertype 39
support in tools 155
viable for data warehouse and data marts 152

event modeling 136

F
fact

consolidation 60

fact (continued)
creating 58
definit ion 42
derived attr ibutes 114
detailed and consolidated 109
determining candidates 100
fact table 46
factless 58, 102
foreign keys 73
guidelines for selecting 101
naming 63
representing business transactions 101
representing changes in state of business

objects 103
representing state of business objects 102
semantic properties 100
sequence of determination 98
unique id for 106

fact table 46
factless facts 102
foreign key 39, 73
forward engineering 156
FSDM 28, 32
full refresh 73

G
glossary 193
granulari ty 28, 58, 60, 99

H
hypercube 43

I
IBM VisualAge DataAtlas 158
implementat ion

advantages of top down 19
bottom up more popular 20
disadvantages of bottom up 20
factors influencing 18
IS role in top down 19
top down 19

Intersolv Excelerator II 158
IS

control of data marts 17
control of global data warehouse 16
control of independent data marts 18
role in top down implementation 19

K
Kimball, Ralph 102, 114, 151, 153
knowledge discovery 12

196 Data Modeling Techniques for Data Warehousing

L
log capture 73
Logic Works ERwin 158

M
measure 43, 55
metadata

changes to 79
conversion algorithms 71
derivation algorithms 71
example 68, 77, 170
keys 74
subsidiary targets 76
support in tools 157
transformations 74
use by end users 66
use in data warehouse 66

multidimensional analysis
definit ion 11
like query and reporting 11

N
normalization 39

O
OLAP 42, 44
OLTP

keys in data warehouse 133—135
modeling different from data warehouse 82—84

P
performance

data granularity 28
issues in operational and data warehouse

systems 71
keys 74
savings with snowflake model 47
subsidiary targets 76

pivoting 11
Popkin System Architect 158
Powersoft PowerDesigner WarehouseArchitect 158
primary key 37, 39

Q
query and reporting

definit ion 10
like multidimensional analysis 11
limited to two dimensions 10

R
real-t ime data 24
reconciled data 24

requirements
analysis 89, 96, 104
gathering 51, 89, 92
information-oriented 92, 95
modeling 91, 117
process-oriented 92, 93
source-driven 52
user-driven 52
validation 90, 115

reverse engineering 156
roll up 12, 44

S
sizing models 65
snowflake model 45
star model 45
star schema 46
state modeling 136
statistical data analysis 12
Sterling ADW 158
subject area 26, 32
subject areas 95
subsidiary targets 76
subtype 39
super entity 26
supertype 39

T
temporal data modeling

advanced techniques 149
basic techniques 145
continuous history technique 142
cumulative snapshot technique 141
overview of techniques 139
time stamp 143
time stamps 145

time stamp 143
time-invariant volati l i ty class 147
time-variant volati l i ty class 147
transform 161
tr iggers 160
two-tiered data modeling 91, 152

V
volati l i ty class 146

W
WSDDM 25

Index 197

198 Data Modeling Techniques for Data Warehousing

ITSO Redbook Evaluation

Data Modeling Techniques for Data Warehousing
SG24-2238-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1998 199

S
G

24
-2

23
8-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

Data Modeling Techniques for Data Warehousing SG24-2238-00

IB
M

L

	Data Modeling Techniques for Data Warehousing
	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	Who Should Read This Book
	Structure of This Book

	Chapter 2. Data Warehousing
	A Solution, Not a Product
	Why Data Warehousing?
	Short History

	Chapter 3. Data Analysis Techniques
	Query and Reporting
	Multidimensional Analysis
	Data Mining
	Importance to Modeling

	Chapter 4. Data Warehousing Architecture and Implementation Choices
	Architecture Choices
	Global Warehouse Architecture
	Independent Data Mart Architecture
	Interconnected Data Mart Architecture
	Implementation Choices
	Top Down Implementation
	Bottom Up Implementation
	A Combined Approach

	Chapter 5. Architecting the Data
	Structuring the Data
	Real- Time Data
	Derived Data
	Reconciled Data
	Enterprise Data Model
	Phased Enterprise Data Modeling
	A Simple Enterprise Data Model
	The Benefits of EDM
	Data Granularity Model
	Granularity of Data in the Data Warehouse
	Multigranularity Modeling in the Corporate Environment
	Logical Data Partitioning Model
	Partitioning the Data
	Subject Area

	Chapter 6. Data Modeling for a Data Warehouse
	Why Data Modeling Is Important
	Data Modeling Techniques
	ER Modeling
	Basic Concepts
	Advanced Topics in ER Modeling
	Dimensional Modeling
	Basic Concepts
	Visualization of a Dimensional Model
	Basic Operations for OLAP
	Star and Snowflake Models
	Data Consolidation
	ER Modeling and Dimensional Modeling

	Chapter 7. The Process of Data Warehousing
	Manage the Project
	Define the Project
	Requirements Gathering
	Source- Driven Requirements Gathering
	User- Driven Requirements Gathering
	The CelDial Case Study
	Modeling the Data Warehouse
	Creating an ER Model
	Creating a Dimensional Model
	Don¢ t Forget the Metadata
	Validating the Model
	Design the Warehouse
	Data Warehouse Design versus Operational Design
	Identifying the Sources
	Cleaning the Data
	Transforming the Data
	Designing Subsidiary Targets
	Validating the Design
	What About Data Mining?
	The Dynamic Warehouse Model

	Chapter 8. Data Warehouse Modeling Techniques
	Data Warehouse Modeling and OLTP Database Modeling
	Origin of the Modeling Differences
	Base Properties of a Data Warehouse
	The Data Warehouse Computing Context
	Setting Up a Data Warehouse Modeling Approach
	Principal Data Warehouse Modeling Techniques
	Data Warehouse Modeling for Data Marts
	Dimensional Modeling
	Requirements Gathering
	Requirements Analysis
	Requirements Validation
	Requirements Modeling - CelDial Case Study Example

	Chapter 9. Selecting a Modeling Tool
	Diagram Notation
	ER Modeling
	Dimensional Modeling
	Reverse Engineering
	Forward Engineering
	Source to Target Mapping
	Data Dictionary (Repository)
	Reporting
	Tools

	Chapter 10. Populating the Data Warehouse
	Capture
	Transform
	Apply
	Importance to Modeling

	Appendix A. The CelDial Case Study
	A.1 CelDial - The Company
	A.2 Project Definition
	A. 3 Defining the Business Need
	A.3.1 Life Cycle of a Product
	A. 3.2 Anatomy of a Sale
	A. 3.3 Structure of the Organization
	A. 3.4 Defining Cost and Revenue
	A.3.5 What Do the Users Want?
	A.4 Getting the Data
	A.5 CelDial Dimensional Models - Proposed Solution
	A.6 CelDial Metadata - Proposed Solution

	Appendix B. Special Notices
	Appendix C. Related Publications
	C. 1 International Technical Support Organization Publications
	C. 2 Redbooks on CD- ROMs
	C. 3 Other Publications
	C. 3.1 Books
	C. 3.2 Journal Articles, Technical Reports, and Miscellaneous Sources

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	Index
	ITSO Redbook Evaluation

