
1Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DECLARE

DECLARATION SECTION
Optional

BEGIN

BODY STATEMENTS
.... Required

EXCEPTION

STATEMENTS Optional

END;

The above Construction is called PL/SQL BLOCK

2Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DATATYPES

•Binary Integer (-2 **31-1,2**31+1) signed integer fastest
•CHAR(n) n up to 32767 note : 255 for RDBMS fields.
•varchar2(n) n up to 32767 note : 2000 for RDBMS fields.
•varchar(n) same as varchar2 note : not recommended.
•long up to 32767 note: 2 GB for RDBMS fields.
•raw up to 32767 note: 255 for RDBMS fields
•long raw up to 32767 note: 2 GB for RDBMS fields
•Boolean True, False or Null
•Date Jan 1 4712 BC up to DEC 31, 4612 with time
•Number(n,d) precision up to n=38 and d -84,127
•Rowid stores Oracle rowids in readable format

•float
•Decimal
•Numeric
•Real
•Integer

3Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

•Birthday Date;
•count integer := 6; -- Note initialized variable
•acc_id varchar2(10) not null := ‘SHC’

Note:- if a variable is declared not null it must be
immediately initialized in declaration section

acc_id varchar2(10) not null --not valid

•Gravity constant Real :=9.8;
•Velocity Real := 2.0;
•Time Real := 1.0;
•F_vel velocity - gravity x Time ;

Notes Notes : A constant must be initialized in its declaration
Which will be the constants final value

•my_var number := 22 is identical to
•my_var number default 22;
•%TYPE Tablename.Field%Type
•%ROWTYPE Tablename% Rowtype

The last two types are demonstrated in the following
examples

4Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Examples :

Declare
emp_hiredate emp.hiredate%TYPE;

Begin
select hiredate into emp_hiredate from emp
where empno = 7499;
if emp_hiredate .. etc

.
End;

1)

2) Declare
emp_rec emp%rowtype;

begin
select * into emp_rec

from emp;
if emp_rec.sal = 1200 Then

.....
end if;

end;

empno emp.empno%type
ename emp.ename%type
job emp.job%type
mgr emp.mgr%type
etc
....

Same Dec. As

3) Declare
emp_rec emp%rowtype;
emp_rec2 emp_rec%rowtype
cursor CC1 is select deptno from dept
dept_rec CC1%Rowtype;

Note:- Cursors Concepts will be introduced later

5Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Note :-
Declare

x1 , X2 INTEGER ; -- Illegal
x1 INTEGER ; -- Legal
x2 INTEGER ; -- Legal

SCOPE OF VARIABLESSCOPE OF VARIABLES

Try the following from SQL Prompt
SQL> SET SERVEROUTPUT ON

Declare
A REAL;

Begin
A := 5.2;

DECLARE
A Real;

Begin
A := 2.0;

END;
DBMS_OUPUT.PUT_LINE (‘A = ‘|| A);

END;

A = 5.2.
The variable A declared in the inner block is different
than the A declared in the outer block and is local for
the inner block

6Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Precedence when Evaluating Expressions
** , Not
* , /
+ . - , ||
= , != , < , > , etc. .. Decreasing
And
Or

DECLARE
Iterate INTEGER;

BEGIN
Iterate := Iterate +1 ;

....
END:

Iterate will always be null because iterate is not initialized

Comparison with NULL yields NULL;
NOT (NULL) = NULL

example a:= Null;
b := Null;
IF a = b then

dbms_output.put_line (‘OK’);
End IF;

The message OK will not appear because
the conditional statement will evaluate to Null

7Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Note also that Zero Length strings are treated like null

Remember that if you wish to test for NULL use IS NULL

i.e. Select * from emp where comm IS NULL;

EXCEPTIONS:

In PL/SQL, a warning or error condition is called an
exception. Exception can be internally defined (by runtime
system) or user_defined.

Examples of internally defined exceptions include divide
by zero and no data found. Common internal exceptions
have predefined name such as ZERO_DIVIDE and
NO_DATA_FOUND

When an error occurs, an exception is raised. That is,
Normal execution stops and control transfers to the
exception handling part of your PL/SQL Block.

To handle raised exceptions, you write separate routines
exception handlers. After an exception handler runs,the
current block stops executing.

Without exception handling, every time you issue a
command, you must check for execution errors

8Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Example Using Exceptions

Declare
val number ;

Begin
select sal into val from emp where empno=9989;
if val < 800 then

Update emp set sal=1000 where empno=9989;
end if;

Exception
When NO_DATA_FOUND Then

declare
val1 number;
val2 varchar2(50);

begin
val1 := sqlcode;
val2 := sqlerrm;

insert into log values (val1,val2);
end;

End;

9Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Exercise

1-Write one SQL statement (NOT PL/SQL) that will update
the EMP table so that all employees whose salary is more
than 2000 will get 5% increase in salary and empolyees
whose salary is less or equal to 2000 will get 10% increase.

2-Try the same thing using PL/SQL?

3- Write a PL/SQL block that will convert temperature from
degrees C to degrees F. The range of temperature values
are 0-35.

SOLUTION FOR the last problem

DECLARE

y number;

BEGIN

FOR i in 1 .. 30 loop

y := (9/5)*i + 32;

DBMS_OUTPUT.PUT_LINE (i||’ C= ‘|| y||’ F’);

End loop;

END;

10Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

PREDEFINED EXCEPTIONS

Exception Name ORACLE error SQLCODE

CURSOR_ALREADY_OPEN ORA-06511 -6511
DUP_VAL_ON_INDEX ORA-00001 -1
INVALID_NUMBER ORA-01722 -1722
NO_DATA_FOUND ORA-01403 +100
PROGRAM_ERROR ORA-06501 -6500
TIMEOUT_ON_RESOURCE ORA-00051 -51
TOO_MANY_ROWS ORA-01422 -1422
VALUE_ERROR ORA-06502 -6502
ZERO_DIVIDE ORA-01476 -1476

INVALID_NUMBER can, for example, be raised when you
try to insert in string into a number field in the database.

NO_DATA_FOUND is raised when SELECT INTO returns
no rows or when you reference an uninitialized row in
PL/SQL table (Introduced later).

TIME_OUT_RESOURCE is raised when you are
waiting for a locked table or any other resource

Note: To comment a line use --, and to comment a group of
lines use /* xxxx */ Like C language

x := 10 ; -- This is a comment

11Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

PL/SQL TABLES

PL/SQL TABLES are very similar to arrays know in common
programming language. To use PL/SQL tables, you must
first Declare a new Type call TABLE. Then you define a
variable of that type

EXAMPLES:-

DECLARE
TYPE my_table IS TABLE OF CHAR(10)
INDEX BY BINARY_INTEGER;

TYPE new_type IS TABLE OF dept.loc%Type
INDEX BY BINARY_INTEGER;

scottab my_table;
arr1 new_type;

Please note that you cannot initialize the table at declaration.
You can reference the PL/SQL table in the traditional way an
array is referenced in common programming languages. i.e

scottab(1) := sal*12;

Or by a loop

For i in 1 ..20 loop
scottab(i) := i*10;

End Loop;

12Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

If you try to reference an uninitialized row in a PL/SQL
table, then NO_DATA_FOUND exception is raised.

More examples:-

For i in 1..50 Loop
Insert into dept (deptno)
values (scottab (i));

End loop;

Declare

Type tabtype IS TABLE of number;
INDEX BY BINARY_INTEGER;

TYPE tabtype 1 IS TABLE of CHAR(20)
INDEX BY BINARY_INTEGER;

Empno_tab tabtype;
ename_tab tabtype1;

To Delete PL/SQL table or to deinitialize one element of
the Table, simply assign it to NULL. i.e

scottab(i) := NULL;

13Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Example

DECLARE

TYPE my_array IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

arr_null my_array;
arr1 my_array;

BEGIN

For i in 244669 .. 244699 Loop
arr1(i) := to_date(i,’j’); -- j joulean date
insert into emp (empno,hiredate,deptno)
values (1,arr1(i),5);

END LOOP;
arr1 := arr_null; -- delete arr1

END;

NEXT, RECORD TYPE is INTRODUCED

14Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

PLSQL RECORDS
You can define a record that holds the same structure
of a record in the database as follows:-

DEF_REC DEPT%ROWTYPE;

What if you want to define a record to your own

DECLARE

TYPE user_rec IS RECORD
(deptno Number(2) := 20,
dname varchar2(20),
loc dept.loc%type);

my_rec User_rec;
my_rec2 User_rec;

BEGIN my_rec
my_rec.dname :=‘ACCT’;

END;

ASSIGNMENT my_rec2

my_rec2 :=my_rec;

This is legal only if my_rec and my_rec2 belong to the same
RECORD Type

20 ACCT

20 ACCT

15Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Record can be nested as in the following example:-

DECLARE
TYPE emp_rec IS RECORD

(EMPNO NUMBER(4),
SAL NUMBER(7,4),
DEPTNO NUMBER(3));

TYPE comp_rec IS RECORD
(MGR NUMBER(4),
EMP EMP_REC, -- nested record
LOC VARCHAR2(10));

SHC comp_rec; -- Record SHC of type comp_rec

BEGIN

SHC.MGR := ‘2221’;
SHC.EMP.EMPNO := 1234;

END:

SHC

One of the advantages of RECORDS is that you collect
information about the attributes of an object in one name. Later
you can refer the object as a whole. For example, you can
pass the whole RECORD to a function instead of passing the
individual fields.

MGR EMPNO SAL DEPTNO LOC

2221 1234

16Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

CONTROL STRUCTURES

IF-THEN-ELSIF

If sales > 50000 Then
bonus := 1500;

Elsif sales > 35000 Then
bonus := 500;

Else
bonus := 100;

End If;
Insert into jpayroll Values (emp_id,bonus ..);

make note of Elsif , it does not contain the letter ‘e’ after

Els, nor there is space before if i.e. (ELSIF)

DO NOT MIS-USE IF STATEMET
AND DO NOT MAKþE A SPELINLG
MISTAKE WITH
IF - ELSE - ELSIF and END IF

17Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

The following is not efficiently written :-

DECLARE
overdrawn BOOLEAN;
......

BEGIN

IF new_balance < minimum_balance THEN
overdrawn := TRUE;

ELSE
overdrawn := FALSE;

END IF;

IF overdrawn = TRUE THEN
......

END IF;
END:

YOU can replace the first IF statement with

overdrawn := new_balance < minimum_balance;

AND the second IF with

IF overdrawn THEN

Substitution Variables EXAMPLE ON NEXT PAGE

18Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DECLARE
deptno number(2);

BEGIN
SELECT COUNT(*) INTO deptno FROM EMP
WHERE deptno = &&dept_no;
IF deptno <3 THEN

UPDATE emp SET deptno = 50
WHERE deptno = &&dept_no;

ELSE
DBMS_OUTPUT.PUT_LINE (‘No of Emp. = ‘|| deptno);

END IF;
END;

How Does &&dept_no differ from &dept_no?

Remember: the DBMS_OUTPUT.PUTLINE requires

SQL> SET SERVEROUTPUT ON

Try the above example, It should work!
Note the Semi-colon after END IF and after END

19Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

LOOP and EXIT

LOOP
x := cos (y+sqrt(z));
IF x=1 THEN

......
EXIT; -- Exit loop here

END IF;
END LOOP;

NOTE: EXIT is only meaningful within a LOOP

Equivalently one can user EXIT-WHEN

LOOP
x := cos (y+sqrt(z));
EXIT WHEN x=1;

END LOOP;

Can we nest loop ? The answer is YES

WHILE-LOOP

WHILE condition LOOP
Sequence of statements

END LOOP;

20Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

FOR - LOOP

FOR i in 1 .. 3 LOOP
Sequence of Statement;

END LOOP;

FOR x in REVERSE 1.. 3 LOOP
Sequence of Statements;

END LOOP;

IF you write

For i in 3 .. 3 LOOP etc.

Then your loop will execute once

NOTES:- The loop counter is Implicitly declared and
is local to the loop. If you declare a variable
of the same name it will be dealt with as a
different variable global to the program.

-The loop counter cannot be assigned values
within the loop.

BASIC Language provides the following:
FOR I = 1 TO 100 STEP 5;

How can we implement this is PL/SQL?

21Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

There is no direct way to do it in PL/SQL but if you
use your mind, you can do the following:-

FOR i in 1..100 LOOP
IF MOD(i,5) = 0 THEN

sequence of statements;
END IF;

END LOOP

HOW about GOTO Statement?

PL/SQL provides GOTO statement but I will not
mention it because all programming teachers say

DO NOT USE IT!

BEGIN
...
GOTO FIRST; -- The label is FIRST...

. . . .
<<FIRST>> -- Label
INSERT INTO emp VALUES ...

END;

22Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Explicit Declaration

- CURSOR C1 is Select id,name From mytable
where id > 2000;

This is a declaration statement of a cursor that contains
a simple SELECT and must be declared in the declaration
section of a PL/SQL Block. C1 is the name of the cursor
and can be any name.

One can use the cursor within the body of PL/SQL by using
OPEN, FETCH .. INTO and CLOSE

THE OPEN statement executes the query associated with
the cursor, and identifies the active set, and positions the
cursor at the first row. The FETCH .. INTO statement retrieves
the current row AND stores it into local variables and advances
the cursor to the next one. The CLOSE statement disables
the cursor. The following diagram explains the concept.

The World of CursorsThe World of Cursors

The set of rows returned by a query can consist of zero,
one, or multiple rows, depending on your search condition.
When query return multiple rows, you can explicitly define
a cursor to process the rows.

23Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

CURSOR CONþTROL

7369 SMITH CLERK 800 20
7499 ALLEN SALESMAN 1600 300 30
7521 WARD SALESMAN 1250 500 30
7566 JONES MANAGER 2975 20
7654 MARTIN SALESMAN 1250 1400 30
7698 BLAKE MANAGER 2850 30
7782 CLARK MANAGER 2450 10
7788 SCOTT NANALYST 3000 20

etc

emp table

CURSOR C1 IS SELECT EMPNO,ENAME,JOB FROM EMP
WHERE SAL > 1250;

7499 ALLEN SALESMAN

7566 JONES MANAGER

7698 BLAKE MANAGER

7782 CLARK MANAGER

7788 SCOTT ANALYST

ACTIVE SETOPEN

FETCH

CLOSE

Current
ýRow

24Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

EXAMPLE

DECLARE
CURSOR my_cursor IS
SELECT sal+NVL(comm,0) wages , ename
FROM EMP;
X1 number;
x2 varchar2 (20);

BEGIN
OPEN my_cursor;
LOOP

FETCH my_cursor INTO x1,x2;
EXIT WHEN my_cursor%NOTFOUND;
IF x1 > 2000 THEN

INSERT INTO anytable VALUES (x1,...);
END IF;

END LOOP;
CLOSE my_cursor;

END;

The same thing can also be done as follows

CURSOR my_cursor IS
SELECT sal+NVL(comm,0) wages , ename
FROM EMP;
my_rec my_cursor%ROWTYPE --

BEGIN
CONT .Next Page

25Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

Passing Parameters to Cursors

When you open a cursor you can pass parameters to it.
For example

DECLARE
CURSOR MY_C (VAR 1 NUMBER) IS
SELECT ENAME,SAL, DEPTNO FROM EMP
WHERE EMPNO=VAR1;

BEGIN
OPEN MY_C (7499);

etc.
END;

OPEN my_cursor;
LOOP

FETCH my_cursor INTO my_rec;
EXIT WHEN my_cursor%NOTFOUND;
IF my_rec.wages > 2000 THEN

INSERT INTO anytable
VALUES (my_rec.sal, .);

END IF;
END LOOP;
CLOSE my_cursor;

END;

26Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

MORE EXAMPLE ON FETCHING CURSORS

DECLARE
CURSOR C1 IS SELECT

EMPNO,ENAME,SAL FROM EMP;
m_empno NUMBER(10);
m_ename VARCHAR2(10);
m_sal NUMBER(2);

BEGIN
OPEN C1; -- ACTIVE SET IS IDENTIFIED.
LOOP

FETCH C1 INTO m_empno,m_ename,m_sal;
EXIT WHEN C1%NOTFOUND; -- when EOF
IF m_sal < 2000 THEN

UPDATE EMP SET SAL=SAL*1.1 where
empno = m_empno;

END IF;
END LOOP;
CLOSE C1

END;
Note: What happens if during the fetch of a certain record whose m_sal is <
2000, the same record was changed by another user? How to correct the
problem

DECLARE
CURSOR C1 IS SELECT JOB FROM EMP;
JOB1 EMP.JOB%TYPE;
BEGIN

OPEN C1;
LOOP

27Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

FETCH C1 INTO JOB;
EXIT WHEN C1%NOTFOUND;

...
END LOOP;

CURSOR ATTRIBUTES

%NOTFOUND
%FOUND
%ROWCOUNT
%ISOPEN

Before the first fetch, the %NOTFOUND evaluates to NULL.
If the last fetch fails to return a row %NOTFOUND
evaluates to TRUE.

%FOUND is the opposite of %NOTFOUND.

When you open the cursor, %ROWCOUNT is zeroed.
%ROWCOUNT is incremented every time a row is fetched.

%ISOPEN evaluates to TRUE if its cursor is open

IF c1%ISOPEN THEN -- cursor is open
...

ELSE OPEN c1

28Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

EXAMPLE

DECLARE
num1 data_table.n1%TYPE;
num2 data_table.n2%TYPE;
num3 data_tablen3%TYPE;
result temp.col1%TYPE;
CURSOR c1 IS
SELECT n1,n2,n3 from data_table

WHERE experiment=1;
BEGIN

OPEN c1;
LOOP

FETCH c1 INTO num1,num2,num3;
EXIT WHEN c1%NOTFOUND; -- UNTIL EOF
result := num2/(num1+num3);
INSERT INTO temp VALUES (result);

END LOOP;
CLOSE c1;
COMMIT;

END;

Note the Use of COMMIT to make sure that
the inserted records are saved, the end of the
block does not automatically commit a trans.

29Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

UPDATING THE RECORD OF THE CURRENT
CURSOR

We have seen the following example before. Is this the best way
to implement the Update?

DECLARE
CURSOR C1 IS SELECT

EMPNO,ENAME,SAL FROM EMP;
m_empno NUMBER(10);
m_ename VARCHAR2(10);
m_sal NUMBER(2);

BEGIN
OPEN C1; -- ACTIVE SET IS IDENTIFIED.
LOOP

FETCH C1 INTO m_empno,m_ename,m_sal;
EXIT WHEN C1%NOTFOUND; -- when EOF
IF m_sal < 2000 THEN

UPDATE EMP SET SAL=SAL*1.1 where
empno = m_empno;

END IF;
END LOOP;
CLOSE C1

END;

Note that the Update statement is intended to update the record
currently fetched by cursor C1. Instead of using Where
empno=m_empno , we can use FOR UPDATE and CURRENT
OF Construct as the following example shows

30Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DECLARE
CURSOR C1 IS SELECT
ENAME,SAL FROM EMP FOR
UPDATE OF SAL;
m_ename VARCHAR2(10);
m_sal NUMBER(2);

BEGIN
OPEN C1; -- ACTIVE SET IS IDENTIFIED.
LOOP

FETCH C1 INTO m_ename,m_sal;
EXIT WHEN C1%NOTFOUND; -- when EOF
IF m_sal < 2000 THEN

UPDATE EMP SET SAL=SAL*1.1 where
CURRENT OF C1;

END IF;
END LOOP;
CLOSE C1

END;

Notes:
1- FOR UPDATE OF makes sure that the active set is
locked and cannot be changed by other users.

2- CURRENT OFC1 means that the update will affect the
currently fetched record.

3- Please remember that CURRENT OF is valid only if the
cursor was declared using the FOR UPDATE

31Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

One problem with CURRENT OF usage is that it cannot be
used if COMMIT is issued within the loop. Doing so will
result in a “FETCH OUT OF SEQUENCE” error. i.e the
following will give an error

LOOP
FETCH C1 INTO m_ename,m_sal;
EXIT WHEN C1%NOTFOUND; -- when EOF
IF m_sal < 2000 THEN

UPDATE EMP SET SAL=SAL*1.1 where
CURRENT OF C1;

END IF;
COMMIT -- This will cause an error

END LOOP;

Before discussing who to fix this problem. Is it good to Commit
within a loop?

Cosider the following factors before you answer: ROLLBACK,
PERFORMANCE, MEDIA FAILURE, POWER FAILURE.

FIX:
The best fix to the above mentioned problem is not to use the
CURRENT OF construct. Instead, fetch the ROWID in the
cursor and use it in the where clause of the Update statment to
help identify the record being updated. The usage of ROWID
will guarantee the fastest access path to your record. The
following example illustrates:

32Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DECLARE
CURSOR C1 IS SELECT

ENAME,SAL rowid FROM EMP FOR
UPDATE OF SAL;

m_ename VARCHAR2(10);
m_sal NUMBER(2);
m_rowid rowid;

BEGIN
OPEN C1; -- ACTIVE SET IS IDENTIFIED.
LOOP

FETCH C1 INTO m_ename,m_sal,m_rowid;
EXIT WHEN C1%NOTFOUND; -- when EOF
IF m_sal < 2000 THEN

UPDATE EMP SET SAL=SAL*1.1 where
rowid=m_rowid;

END IF;
COMMIT;

END LOOP;
CLOSE C1

END

33Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

IMPLICIT CURSORS

ORACLE implicitly opens a cursor to process each SQL
statement not associated with an explicitly declared cursor.

You can refer to most recent implicit cursor as the “SQL”
cursor.

Example

UPDATE daily_journal SET qty = qty + 1
WHERE part_id = 100;
IF SQL%NOTFOUND THEN -- No Rows updated

INSERT INTO Purchase_order values (100);
END IF;

Note that SQL%NOTFOUND evaluates the LAST SQL
statement only

DECLARE

my_count;

BEGIN

SELECT MAX(sal) INTO my_count FROM emp

WHERE deptno = 8898; -- CONTINUE NEXT PAGE

34Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

IF SQL%NOTFOUND THEN
DELETE FROM EMP;
/* THIS action is never taken because
the function MAX evaluates to a value
or a NULL and %NOTFOUND evaluates
to FALSE */

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN NULL;
-- never reaches this part.

END:

CURSOR FOR LOOP

A cursor FOR LOOP implicitly declares its Loop index
as a record of type %ROWTYPE, OPENS a cursor,
FETCHES records and CLOSES the cursor

DECLARE
result temp.col1%TYPE;
CURSOR C1 IS SELECT n1,n2,n3 from m_tab;

BEGIN
FOR my_record IN C1 LOOP;

Let us explain this FOR Loop

35Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

The counter my_record can be any name. When the
FOR statement is executed, the my_record is implicitly
declared as a RECORD with fields and datatypes similar
to those existing in the CURSOR c1. The FOR LOOP
OPENs the CURSOR c1 and FETCHEs all column values
of the current row and stores into the record fields
which are

my_record.n1
my_record.n2
my_record.n3

This is equivalent to saying

DECLARE
CURSOR C1 IS SELECT n1,n2,n3 from m_tab;
my_record c1%ROWTYPE;
BEGIN

OPEN c1;
LOOP;

FETCH c1 into my_record.n1,
my_record_n2,my_record.n3;
EXIT WHEN C1%NOTFOUND;

END LOOP;
CLOSE c1

END;

36Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

MORE ABOUT ERROR HANDLING:-

Define Your own EXCEPTION as Follows :-

DECLARE
angry EXCEPTION
...

BEGIN
...
IF x > 100 then

RAISE angry;
END IF;

EXCEPTION
WHEN angry THEN

.....
WHEN OTHERS THEN

....
END ;

It is also possible to handle Internal error that do not
have PRE-DEFINED EXCEPTIONS. This is only
possible if one knows the ORACLE’s Error code which
is associated with that internal error. SEE EXAMPLE
ON NEXT PAGE.

37Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

DECLARE
no_privileges EXCEPTION;
PRAGMA EXCEPTION_INIT(no_privileges,-1031);

-- -1031 is the error code associated with trying to update
-- a table for which you only have SELECT privileges
BEGIN

UPDATE team4.emp SET sal=sal+100;
EXCEPTION

WHEN no_privileges THEN
-- handle the newly defined exception

WHEN others THEN
-- Handle other exceptions

END;

RAISE_APPLICATION_ERROR

This is a procedure which lets you issue user_Defined
error messages from your PL/SQL Code

DECLARE
x number;

BEGIN
SELECT comm INTO x FROM emp WHERE empno= 7902;
IF x IS NULL THEN

raise_application_error(-20001,’Comm is Null’);
ELSE

UPDATE emp set comm = comm+200 where
empno = 7902;

END IF;
END;

38Palestine Engineering Comp
PALCO

June, 96

Ammar Sajdi, OCP

RETRYING A TRANSATION :-

DECLARE
empno number(4) := 7755;

BEGIN
FOR i in 1 .. 3 LOOP -- Retry Three Times

BEGIN
SAVEPOINT start1; -- Mark a savepoint
INSERT INTO EMP (empno,sal)
VALUþES(empno,1000);

-- might raise DUP_VAL_ON_INDEþX
-- if empno already exists;

COMMIT;
exit;

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK to start1; -- UNDO
empno := empno +1; -- try to fix

END;

END LOOP;
END;

CAN YOU EXPLAIN IT?

NOTE about raise_application_error: The code number you
are allowed to use is restricted to the range -20000 .. -20999

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

