
1May 96 - Procedures Palestine Eng.

STORED PROCEDURES AND
FUNCTIONS

CREATE OR REPLACE PROCEDURE sal_raise (ID IN
NUMBER, sal_incr IN NUMBER) AS

BEGIN

UPDATE emp

SET sal = sal + sal_incr

WHERE empno = id;

IF SQL%NOTFOUND THEN

raise_application_error (-20002, Invalid emp);

END IF;

END sal_raise;

When you finish writing the procedure type
(/) as the only character on the last line

TO execute the above procedure from SQL*PLUS

SQL> execute sal_raise(7499,300);

2May 96 - Procedures Palestine Eng.

To execute the procedure from within a PL/SQL Block
Just write the name of the procedure without the reserved
word EXECUTE

DECLARE
x number(4);
y number(4)

BEGIN
Select sal,empno into x,y from emp
where ename= KING ;
IFx< 6000 THEN

sal_raise (y,1000);
END IF

END

NOTE : TO CREATE a Procedure you must be granted the
CREATE PROCEDURE privilege.

TO EXECUTE a Procedure you must be granted
the EXECUTE PROCEDURE privilege.

When a procedure is created it is stored in the Database
in Both Source code and Object Code

NEXT LET US LOOK AT FUNCTIONS

3May 96 - Procedures Palestine Eng.

CREATE FUNCTION get_bal(acc_no NUMBER)
RETURN NUMBER

IS (or AS)
acc_bal NUMBER; -- Local Variable

BEGIN
SELECT balance INTO acc_bal FROM Account
WHERE acc_id=acc_no;
RETURN (acc_bal);

END;

Valid Statement in Procedures and Functions are the
Same as valid statement in PL/SQL programming

DML (INSERT, UPDATE, DELETE)
Calls to Stored procedures and Functions
Calls to Other procedures stored in remote database
Dynamic SQL (ONLY in Version 7.1 of ORACLE)

When errors are generated during creation (compilation) of
procedures, one can see these error by

SQL> SHOW ERRORS; SQL*PLUS command

Alternatively, by querying the following data dictionary tables

USER_ERRORS
ALL_ERRORS
DBA_ERRORS

4May 96 - Procedures Palestine Eng.

Therefore, the errors are stored in the data dictionary
as part of the database. These errors are automatically
stored in the database and will be deleted when the
procedure is dropped.

The original source code can be retrieved from the
data dictionary as well. This can be done by querying
the following Views

USER_SOURCE
ALL_SOURCE
DBA_SOURCE

The procedure s source code is removed from the data
dictionary when the procedure is dropped by the following
command

SQL> DROP PROCEDURE sal_raise;

A Procedure depends on
Every database object it refers to in its Body (Tables..).
The database objects those objects depend on.

When the definition of those object changes, its dependent
objects (i.e procedures) are marked for recompilation.

The data dictionary can tell which procedures are Invalid
and need recompilations

USER_OBJECTS

5May 96 - Procedures Palestine Eng.

Recompilation of dependent objects (procedures)
occurs automatically at run time if needed.

One can recompile manually by

SQL> ALTER PROCEDURE sal_raise COMPILE;

To execute a procedure on a remote server user

EXECUTE proc_name@JORDAN(Parameter list);

Where JORDAN is the remote server DATE LINK name.
Consider the following Diagram

procedure
INSERT INTO EMP

TABLE
EMPTEAM5

owner
is

TEAM3Execute

TEAM3 is Owner of TABLE EMP and the Procedure Proc1.
TEAM5 Has execute permission on Procedure Proc1, but
has no INSERT Permission to TABLE TEAM3.EMP.
What will happen at execution Time.

INHERITANCE is The Answer

6May 96 - Procedures Palestine Eng.

PACKAGES

Packages are nothing but a collection of procedures and
Functions that the programmer chooses to collect together
perhaps because these procedures or function are
somehow related.

The declaration of a package has two parts:-

Package Specification
Package Body

The package specification contains the declaration of
procedures (and functions), variables, constants, and
exceptions that are accessible outside the package.

The package body defines procedures (and functions),
and exceptions that are declared in the package
specification. The package body can also define
procedures, variables, constants, cursors, and exceptions
not declared in the package specification; however, these
objects are only accessible within the scope of the
package.

We have already used a package called DBMS_OUTPUT
and executed the procedure PUT_LINE and therefore
the syntax DBMS_OUTþPUT.PUT_LINE

7May 96 - Procedures Palestine Eng.

EXAMPLE

CREATE PACKAGE sud_tel AS
FUNCTION inser_rec (sub_no NUMBER, tel_no NUMBER)

RETURN NUMBER;
PROCEDURE remove_rec (sub_no NUMBER);
PROCEDURE change_rec (sub_no NUMBER, tel_no NUMBER);
END sud_tel;

CREATE PACKAGE BODY SUD_TEL AS
FUNCTION inser_rec (sub_no NUMBER, tel_no NUMBER)

RETURN NUMBER
IS
BEGIN

INSERT INTO sudatel VALUES(sub_no,tel_no);
RETURN(0);

END inser_rec;
PROCEDURE remove_rec (sub_no NUMBER) IS
BEGIN

DELETE FROM sudatel where sub_no=sub_no;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR (-20002, msg);
END IF;

END remove_rec;
PROCEDURE change_rec (sub_no NUMBER,tel_no NUMBER) IS

UPDATE sudatel SET telno=tel_no
WHERE sub_no = subno;
IF SQL%NOTFOUND THEN ...
END IF;

END change_rec;
END sud_tel;

TO change the number of a sub. SUD_TEL.change_rec(1,22);

8May 96 - Procedures Palestine Eng.

Any variable declared in the package specification
section is global for all procedures and function withing
that package

Example

create or replace package test_global is
procedure get_time;
procedure put_time;
x date;

end test_global;

/

create or replace package body test_global is procedure
get_time is

begin
select sysdate into x from dual;

end get_time;
procedure put_time is
begin

dbms_output.put_line(sysdate-x);
end put_time;
end test_global;

/

SQL>Set ServerOuptut On
SQL> Execute test_global.get_time -- x is

initialized SQL> Execute test_global.put_time
-- x is still defined

.001226

Which is the time difference between the execution of
both statement (0.001226 fraction of a day)

9May 96 - Procedures Palestine Eng.

BENEFITS OF PROCEDURES

1. SECURITY

2. INTEGRITY

3. PERFORMANCE
Reduce no of calls to Database;
Decrease network traffic;
Compiled SQL statement or Pre-parsed

4. MEMORY SAVING
requires one copy of code only.
Takes advantage of ORACLE SHARED SQL

5. PRODUCTIVITY
Avoids redundant code for multiple applications.
Reduces errors.

6. MAINTAINABILITY
Dependency tracking by ORACLE
System wide changes

NEXT SECTþIOþN DATABASE TRIGGERS

10May 96 - Procedures Palestine Eng.

DATABASE TRIGGERS

Database Triggers are procedures that are stored in the
database and implicitly executed (fired) when a table is
modified

COMPLETE EXAMPLE

CREATE TABLE balance (acc_id NUMBER ,

bal NUMBER);

CREATE TABLE daily_trans (acc_id NUMBER

amount NUMBER, cr_db NUMBER);

Requirements: When a transaction is inserted into table

daily_trans, an update statement should automatically
change the balance of that account id in the balance
table, when cr_db is positive, it is a credit, when
negative it is a debit.

This can be easily accomplished by using a database
trigger on table daily_trans. Let see how.

11May 96 - Procedures Palestine Eng.

CREATE OR REPLACE TRIGGER upd_bal
AFTER INSERT ON daily_trans
FOR EACH ROW
BEGIN

UPDATE balance SET bal=nvl(bal,0)+
:NEW.cr_db*:NEW.amount
WHERE acc_id =:NEW.acc_id;
IF SQL%NOTFOUND THEN

INSERT INTO balance
VALUES (:NEW.acc_id,:NEW.amount);

END IF;
END;

TABLE
daily_
trans

Table Balance Before
Row is inserted in table
daily_trans

1211 1000

ONE row inserted in table daily_trans
for acc_id 1211 amount 100

1211 1100
Trigger Action

NOTE that trigger executes (or Fires) automatically
after inserting the record on daily_trans

12May 96 - Procedures Palestine Eng.

Use triggers to guarantee that when a specific operation
is performed, related actions are performed.

Do not define triggers to duplicate the functionality
already built into ORACLE. For example, do not define
triggers to enforce data integrity rules that can be
enforced using declarative integrity constraints.

Be careful not to create recursive triggers. For example
creating BEFORE UPDATE statement trigger on DEPT,
that itself issues an update statement on DEPT, causes
the trigger to fire recursively.

Warning: Because a trigger must be compiled when it is
first fired, it is a good idea to limit the size of triggers to
roughly 60 lines). Compilation of small triggers have
negligible effect on the system. To handle large triggers
you can write its code using a procedure and let the
trigger call the procedure. Remember that procedures
are stored in compiled format. Therefore, one can avoid
compilation time of large segments of code.

To create a trigger in your account (schema) you must have
a CREATE TRIGGER system privilege.

13May 96 - Procedures Palestine Eng.

You can also let the triggering action take place when
you DELETE OR INSERT OR UPDATE a table.
For example:

CREATE OR REPLACE TRIGGER my_trig
BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW
DECLARE

-- variables, cursors, etc ..
BEGIN

-- PL/SQL BLOCK
END;

The above trigger will execute (fire) whenever any
record is updated or deleted or inserted in the table
emp.

Please note that the trigger will fire if any field of the
emp is updated. One can restrict the firing to take
place only if a specific field in updated.

EXAMPLE

CREATE TRIGGER my_trig
BEFORE DELETE OR UPDATE OF sal ON emp
FOR EACH ROW

.... etc.

The statement FOR EACH ROW is OPTIONAL. If it is
included the trigger is called a row trigger, if not then

14May 96 - Procedures Palestine Eng.

trigger is called a statement trigger. The absence of this
FOR EACH ROW option implies that the trigger should
only be fired once for the triggering statement. Its
presence dictates, however, that the trigger body is fired
individually for each row of the table affected by the
triggering statement.

Optionally, one can add a Boolean SQL expression using
a WHEN clause. If included, the expression in the WHEN
clause is evaluated for each row that the trigger affects. If
the expression evaluates to TRUE for a row, the trigger
body is fired on behalf of that row. If FALSE or NOT
TRUE (As in case of NULLS)

CREATE TRIGGER DUMMY
AFTER DELETE ON EMP
FOR EACH ROW
WHEN (NEW.JOB != MANAGER)
DECLARE

...
BEGIN

The WHEN clause will restrict the action of the trigger
to those employees who are not MANAGERS.

15May 96 - Procedures Palestine Eng.

:NEW and :OLD

When you update a row in a table you change the
current values to the new values. In triggers one can
refer to the old values and the new values by using the
qualifier :NEW and :OLD

Please note that depending on the type of the
triggering statement, certain referencing to :NEW and
:OLD might not be logical.

A trigger fired by an INSERT statement has only :NEW
values.

A trigger fired by an ýUPDATE statement has both of
these values defined.

A trigger fired by DELETE statement has only :OLD
values defined.

The undefined values are NULL

SEE EXAMPLE ON NEXT PAGE

IMPORTANT: DO NOT USE COLON : WITH NEW AND
OLD IF USED WITH WHEN CLAUSE

16May 96 - Procedures Palestine Eng.

CREATE OR REPLACE TRIGGER increase_chk
BEFORE UPDATE OF sal ON EMP
FOR EACH ROW
WHEN (NEW.sal <OLD.sal or NEW.sal >1.1*OLD.sal)
BEGIN

RAISE_APPLICATION_ERROR(-20022, msg);
END;

NOTE The following :-

The trigger will fail and return this user defined error code
which is equal to -20022 and a message. The firing
statement which is the original update of emp will rollback
automatically. OF course the application can capture this
error code and act accordingly.

Therefore, the conclusion is : IF a pre-defined or user-
defined error condition or exception is raised during the
execution of a trigger body, all effects of the trigger body,
as well as the triggering statement, are rolled back (Unless
handled by an exception.

If a trigger can be fired by more than one type of DML
operation (INSERT OR DELETE OR UPDATE OF emp),
the trigger body can use conditional predicates to
execute specific blocks of code, depending on the type of
statement that fires the trigger

17May 96 - Procedures Palestine Eng.

EXAMPLE

CREATE OR REPLACE TRIGGER tot_sal
AFTER DELETE OR INSERT OR UPDATE OF deptno,
sal ON emp
FOR EACH ROW
BEGIN

IF DELETING OR UPDATING THEN
.....

END IF;
IF INSERTING THEN

....
END IF;

END;

Triggers can be DISABLED and later ENABLED.

SQL> ALTER TRIGGER my_trig ENABLE;
SQL> ALTER TRIGGER my_trig DISABLE;

OR
SQL> ALTER TABLE emp ENABLE ALL TRIGGERS;
SQL>ALTER TABLE emp DISABLE ALL TRIGGERS;

Triggers cannot be ALTERED. They should be dropped
and recreated. That is why, you are recommended to
use CREATE OR REPLACE TRIGGER.

To execute any of the above statements you must have
the appropriate privileges

18May 96 - Procedures Palestine Eng.

ALTER ANY TRIGGER system privilege.
DROP ANY TRIGGER system privilege.

As with procedures you can refer to the Data Dictionary
tables and views to get information about the source code
or your triggers

USER_TRIGGERS
ALL_TRIGGERS
DBA_TRIGGERS

TYPE OF TRIGGERS

BEFORE UPDATE row
BEFORE DELETE row
BEFORE INSERT st.
BEFORE INSERT row
BEFORE UPDATE st.
BEFORE DELETE st.

AFTER UPDATE row
AFTER DELETE row
AFTER INSERT st.
AFTER INSERT row
AFTER UPDATE st.
AFTER DELETE st.

COMPARISON BETWEEN TRIGGERS AND PROCEDURES

Triggers are only associated with tables and are executed
implicitly; procedures are invoked explicitly;
COMMIT, ROLLBACK are not allowed in triggers.
Triggers are compiled at least the first time they are loaded
and are not stored in compiled format unlike procedures.

19May 96 - Procedures Palestine Eng.

EXAMPLE

What does the following trigger do?

CREATE OR REPLACE TRIGGER TEST
BEFORE INSERT OR DELETE OR UPDATE ON emp;
DECLARE

x1 INTEGER;
BEGIN
IF TO_CHAR(SYSDATE, DY) IN (THU , FRI) THEN

RAISE_APPLICATION_ERROR (-20020, msg);
END IF
SELECT COUNT(*) INTO x1 FROM HOLIDAY
WHERE day = SYSDATE;
IF X1 > 0 THEN

RAISE_APPLICATION_ERROR(20021, MSG);
END IF;
IF TO_CHAR(SYSDATE, HH24) NOT BETWEEN

08 AND 18 THEN
RAISE_APPLICATION_ERROR(20022, MSG);

END IF;
END;

It checks for security authorization.

20May 96 - Procedures Palestine Eng.

Another example

CREATE TRIGGER reorder
AFTER UPDATE OF part_on_hand ON inventory
FOR EACH ROW
WHEN (new.part_on_hand < new.reorder_point)
DECLARE

x NUMBER;
BEGIN

SELECT COUNT(*) INTO x FROM PENDING
WHERE part_no = :new.part_no;
IF X = 0 THEN

INSERT INTO pending VALUES
(:new.part_no, :new.reorder_qty, sysdate);

END IF;
END;

21May 96 - Procedures Palestine Eng.

TRIGGERS APPLICATIONS:

Provide sophisticated auditing.
Prevent invalid transactions.
Enforce complex business rules.
Enforce complex security authorizations.
Provide transparent event logging.
Maintain synchronous table replication.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

